US009418245B2

a2 United States Patent

Shibutani et al.

US 9,418,245 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(30)

Mar. 28, 2011
Sep. 22, 2011

(1)

(52)

ENCRYPTION PROCESSING DEVICE,
ENCRYPTION PROCESSING METHOD, AND
PROGRAM

Inventors: Kyoji Shibutani, Tokyo (JP); Toru
AKishita, Tokyo (JP); Takanori Isobe,
Tokyo (JP); Taizo Shirai, Kanagawa
(IP); Harunaga Hiwatari, Kanagawa
(IP); Atsushi Mitsuda, Tokyo (JP)

Assignee: SONY CORPORATION, Tokyo (JP)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 124 days.

Notice:

Appl. No.: 14/002,379

PCT Filed: Feb. 20, 2012

PCT No.:

§371 (D),
(2), (4) Date:

PCT/IP2012/053931

Aug. 30, 2013

PCT Pub. No.: WO02012/132621
PCT Pub. Date: Oct. 4, 2012

Prior Publication Data

US 2013/0339753 Al Dec. 19, 2013
Foreign Application Priority Data

2011-069183
2011-207703

(P
(P)

Int. CI.
GOGF 21/72
HO4L 9/06
G09C 1/00
USS. CL
CPC GOGF 21/72 (2013.01); GO9C 1/00 (2013.01);
HO4L 9/0625 (2013.01); HO4L 9/0631
(2013.01); HO4L 2209/122 (2013.01)

(2013.01)
(2006.01)
(2006.01)

n2 4"

(58) Field of Classification Search
CPC GOG6F 21/72; GO9C 1/00; HO4L 9/0631;
HO04L 9/0625; HO4L 2209/122
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,512,977 A * 4/1996 Imaiccoovvvveiiennnene 399/366
6,215,875 B1* 4/2001 Nohdacccccccevvvenen. 380/202
(Continued)
OTHER PUBLICATIONS

Wei, et al., “Impossible Differential Cryptanalysis on Feistel Ciphers
with SP and SPS Round Functions”, Applied Cryptography and
Network Security, lecture notes from the 8th International Confer-
ence, ACNS 2010, Beijing, China, Jun. 22-25,2010.*

(Continued)

Primary Examiner — Joseph P Hirl
Assistant Examiner — J. Brant Murphy
(74) Attorney, Agent, or Firm — Chip Law Group

(57) ABSTRACT

Included is an encryption processing unit configured to divide
and input configuration bits of data to be data processed into
aplurality of lines, and to repeatedly execute data conversion
processing of data for each line. The encryption processing
unit includes an F function execution unit to input data from
one line configuring the plurality of lines and generate con-
verted data, an XOR calculation unit to execute an XOR
calculation with other lines of data corresponding to the out-
put from the F function, an intermediate data storage register
to store intermediate data during the process of generating
converted data in the F function execution unit, and an inverse
calculation executing unit to calculate input data regarding
the F function execution unit on the basis of the data stored in
the intermediate storage register.

10 Claims, 32 Drawing Sheets

RKy P—x

ROUND FUNCTION
FIRST ROUND

Ve
V%)

ROUND FUNCTION
SECOND ROUND

Fa)
\N%)

N
"\J/i ROUND FUNCTION

(r-1) ROUND

XORWITH ROUND KEY{
LINEAR CONVERSION {

s

ROUND FUNCTION
rROUND

NON-LINEAR CONVERSION{

w2 g

E}— FK

Ct

US 9,418,245 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,073,140 B2 12/2011 Shirai et al.

8,695,106 B2* 4/2014 Spalkaetal. ... 726/30
2002/0012430 Al1* 1/2002 Lim 380/29
2003/0059044 Al* 3/2003 Shimizuetal. 380/37
2003/0138098 Al* 7/2003 Colecccoeeveni. HO4L 9/0625

380/28
2004/0008841 Al* 1/2004 Aokietal ... 380/42
2005/0055596 Al* 3/2005 Abeetal. ... 713/500
2005/0226407 Al* 10/2005 Kasuya et al. .. 380/28
2007/0194957 Al* 8/2007 Watanabe 341/106
2009/0010425 Al 1/2009 Shibutani et al.
2009/0113214 Al* 4/2009 Dolgunov etal. 713/189
2010/0014659 Al* 1/2010 Shibutani et al. .. 380/28
2010/0061548 Al* 3/2010 Shirai etal. 380/28
2010/0091991 Al* 4/2010 Shibutani et al. 380/259
2010/0104093 Al* 4/2010 Shiraietal. 380/28
2010/0226493 Al* 9/2010 Shiraietal. 380/28
2011/0004738 Al* 1/2011 Yasakiet al. . 711/166
2011/0154025 Al* 6/2011 Spalkaetal. ... T13/156
2011/0185188 Al* 7/2011 Spalkaetal. ... 713/189

OTHER PUBLICATIONS

Extended European Search Report issued Jul. 28, 2014 in Patent
Application No. 12765336.8.

Ramesh Karri, et al., “Concurrent Error Detection of Fault-Based
Side-Channel Cryptanalysis of 128-Bit Symmetric Block Ciphers”,
Proceedings of the 38th Annual Design Automation Conference,
(DAC), vol. CONF. 38, XP010552454, (Jun. 18-22, 2001), pp. 579-
584.

Ramesh Karri, et al., “Fault-Based Side-Channel Cryptanalysis Tol-
erant Rijndael Symmetric Block Cipher Architecture”, Proceedings
2001 IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, XP055008477, (Jan. 1, 2001), pp. 427-435.

U.S. Appl. No. 12/161,898, filed Jul. 23, 2008, Shibutani et al.

U.S. Appl. No. 14/005,3663, filed Sep. 17, 2013, Shibutani et al.
U.S. Appl. No. 14/006,392, filed Sep. 20, 2013, Shibutani et al.
U.S. Appl. No. 14/002,462, filed Aug. 30, 2013, Shibutani et al.
U.S. Appl. No. 14/278,632, filed May 15, 2014, Shirai et al.
International Search Report issued Mar. 27, 2012 in PCT/JP2012/
053931.

Ramesh Karri, et al. “Concurrent Error Detection Schemes for Fault-
Based Side-Channel Cryptanalysis of Symmetric Block Ciphers”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, No. 12, Dec. 16, 2002, pp. 1509-1517 (with
Abstract and bibliographic data).

Panu Hamalainen, et al. “Design and Implementation of Low-area
and Low-power AES Encryption Hardware Core” 9 Euromicro
Conference on Digital Systems Design, Oct. 16, 2006, 7 Pages.
Takeshi Sugawara, et al. “High-performance ASIC Implementations
of the 128-bit Block Cipher CLEFIA” IEEE International Sympo-
sium on Circuits and Systems, Jun. 13, 2008, pp. 2925-2928 (with
Abstract and bibliographic data).

Toru Akishita, et al. “128 Compact Hardware Implementations of the
128-bit Blockcipher CLEFIA” 2011 Nen Symposium on Cryptogra-
phy and Information Security Koen Ronbunshu, Jan. 25, 2011, pp.
1-7.

Kyoji Shibutani, et al. “Piccolo: An Ultra-Lightweight Blockcipher”
Lecture Noted in Computer Science, Cryptographic Hardware and
Embedded Systems—CHES 2011, Sep. 27, 2011, 19 Pages.

Kaisa Nyberg, “Generalized Feistel Networks™” Advances in Cryptol-
ogy—ASIACRYPT, vol. 1163, 1996, pp. 91-104.

Yuliang Zheng, “On the Construction of Block Ciphers Provably
Secure and Not Relying on Any Unproved Hypothesis, (Extended
Abstract)” Springer-Verlag, 1998, pp. 461-480.

* cited by examiner

US 9,418,245 B2

Sheet 1 of 32

Aug. 16, 2016

U.S. Patent

O 1X3143HdID

v1iva 1ig-u

A A3

L1l

v1iva 11g-4

viva Lg-u
d IX34INIVd

I Old

US 9,418,245 B2

Sheet 2 of 32

Aug. 16, 2016

U.S. Patent

d IX3INIVd

viva lig-u h

(-3

=) d

J 3

v1iva L1g-u

O IX3143HdID

¢ Old

A AT

v1vad 1184

US 9,418,245 B2

Sheet 3 of 32

Aug. 16, 2016

U.S. Patent

O IX31H3HdID

v1va Lg-u

|
1 1 I
1 1 1
1 1 1
1 1 1
1 | i
1 1 i
1 1 1
1 1 i
1 1 1
_ LINA o AADL LINN
: NOLdAYONT | | 93ANVAX3 v | onring3HOS
| v1va M _ AD A A
1 I
| ; “
1 1 I
I] I
I } I
I i 1
1 ! I
! I 1
I 1 1
] 1 1
1 1 I

V1V Lig-d VLYQ Lig

v1iva Lg-u d IX3INIV1d

€ 9l

U.S. Patent Aug. 16, 2016 Sheet 4 of 32 US 9,418,245 B2

FIG. 4 PLAINTEXT P

1 1

] |

] 1

1 I

1

RKq , . FIRST ROUND |
l ,

1]

1 1

: X2 ¥ :

1 1

1 1

RKy : > SECOND ROUND |
: :

1 1

I X3 | :

1 I

|]

RKj ; »| THIRD ROUND !
1 1

: 7 !

[1

1 . I

1 1

: XR-24 :

1 1

| 1

RKes | , R-2 ROUND |
: :

1 1

1

: XR-14 I

1 1

| 1

RKR-1 : > R-1 ROUND :
: ,

: XR :

I il I

| 1

1 i

RKr ! > R ROUND !
1 1

| |

CIPHERTEXT C

US 9,418,245 B2

Sheet 5 of 32

Aug. 16, 2016

U.S. Patent

1INN ONISS3IO0ud
NOISHIANOD ¥VANIT

3

NOISH3IANOD HV3NIT-NON

|

I

I

1

I

I

1

!

|

|

|

! LINN ONISSIO0Nd
"

" h

" W
_ —

1 Y

)

!

e o e e e en e en an An en an m am e S e E W SR M S e e e e e

aNNOY |
X

G Old

US 9,418,245 B2

Sheet 6 of 32

Aug. 16, 2016

U.S. Patent

FIG. 6

i ROUND

LOWER n/2 BITS OF X

UPPER n/2 BITS OF X

RK;

[y

1

1

1

1

LINNONISSIOONd !
NOISYIANOD |VANIT | +
— —
=
3 i 2
3 LINN ONISS3D04d R
= NOISY3IANQD Lo
n HVINIT-NON 2

“

]

1

LOWER n/2 BITS OF Xix

UPPER n/2 BITS OF X4

U.S. Patent Aug. 16, 2016 Sheet 7 of 32 US 9,418,245 B2
FIG.7
X
PR
”’,——‘ ', \\\ ~~~~~~~~
s 1 S Sea
- -] \\ ~~~~~
&~ A4 4 TN
FIRST n/4 SECONDn/4 THIRDn/4 FOURTHn/4
BITS OF X; BTSOFX; BITSOFX; BITS OF X;
i ROUND
| Rty e Aty i ""I
; FIRST n/4 BITS OF RK; SECOND n/4 BITS OF RK; !
]
: FIRST F FUNCTION SECOND F FUNCTION i
] I-q-- /== e- == 1 1=~ (== == 1
| =| (B! : SIES; :
I x=Z=S| 185N ! xZS5| |BS)h |
1 !] 59@ WOl ¥ ! + <C—)(_l) wicn| i
N O N N = I Y B Nt = [Y
. N A E— g 1S NG Y PN Z2E em \
: :L'J 285 13! :LYJ 283 (23] !
| i i : = EE |
: Lk _____ ! LK _____ ! !
!]
l KEY XOR UNIT KEY XOR UNIT !
: !
! 1
!]
!]
! 1
!]
!)
! 1
! 1
! 1
! !

FIRST n/4 SECONDn/4 THIRDn/4 FOURTH n/4
BITS OF Xjs1 BITSOF Xjs1 BITS OF Xjuq BITS OF X
‘‘‘‘‘‘ et

U.S. Patent Aug. 16, 2016 Sheet 8 of 32 US 9,418,245 B2

FIG. 8
Xi
-~ Maei~
,f—’ [\\$=---~
“’ 1] Vs \:\:~ 1111
—'—4 1 A \\ \\ R
- A T A Tl T
~” v P " “a T Tt Sea
FIRST n/8 SECONDn/8 EIGHTHn/8
BITS OF X; BITS OF X; - BITS OF X;
i ROUND
SN SR £) o4 o SR SR IR DD SRR RN R -
E FIRST n/4 BITS OF RK; !
1
| N _FIB§T_F_F!N_CIION !
: | = 1 l
! ! = 135! !
=D o>]
) ! 59(3 Li¢cn|! L 4)
' 4 177} =
DD :
Y 1eag =8 :
I ! | |Z2E :
: L-Km____'__,' '
! 1
1
: KEY XOR UNIT i
' :
: !
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

FIRST n/8 SECONDn/8 EIGHTHn/8
BITS OF Xj1 BITS OF Xis1 BITS OF Xis1
- \ ’ Pt L S R Rb ol
‘‘‘‘‘ 1 ’I P ,_’_ _'4—‘1‘__—_—_ -
T AR

US 9,418,245 B2

Sheet 9 of 32

Aug. 16, 2016

U.S. Patent

A 1Nd1NO
viva Lig-s
| il e S et il S e 1
1]] _
1 1
] 1
Vo ow |- S Z] !
1 xon-m xon-w xon-m xon-w xon-m |
“ “
] |
] L] _
e O —m e o - - - — - -—— - — - - o
v1va 1ig-s
X 1NdNI
) LINN ONISSID0Nd
v1iva Lig-sw NOISYIANOD ¥VANIT-NON

6 Ol

U.S. Patent Aug. 16, 2016 Sheet 10 of 32 US 9,418,245 B2

FIG. 10

ms-BIT DATA

INPUT X

LINEAR CONVERSION
PROCESSING UNIT

(X, X, X3+ X, X,) € GF(27)"
W V2 Vs " Y V) €GF(27)"

THE FOLLOWING MATRIX IS PERFORMED AND THE RESULT IS

OUTPUT ASY
B2 a, A, a3 ot Ay a,, X,
W2 a Ay 2 T =)) Dom X,
Yi | | 9 s, a3 o Qe A X3
Yma Am-tn Y-z Ym-13 " Qm-pon-1y Fm-dm || Xma1
ym aml am2 am3 o am(m—l) amm y, xm

OUTPUT Y

US 9,418,245 B2

Sheet 11 of 32

Aug. 16, 2016

U.S. Patent

DARFHAD eeeeesssessessssss————n,
) .
\\ u : :
Pany P)4 AZY VNI
N m
NOILONN4 ONNOY |+ o
; 87
m>
m.A
HM - \\ Y|
NOILONNH GNNOY |« &2 N A 13403S
‘ ohd S5
S=<
NOILONNA ONNOY |e =
Nolihelons €D :
o :
v1va £ { OIADIVLIN
A
AN 0IONVdX3
d IXALNIVId .
Ll "©Ol4

US 9,418,245 B2

Sheet 12 of 32

Aug. 16, 2016

U.S. Patent

pE!

aNNoYy 4
NOILONNd ANNOYH

aNNOX (1))
NOILLONN4 ONNOY

aNNOY ANOD3S
NOILONN4 ANNOY

aNNOoY 15414
NOILONN4 ANNOY

Al

g0

=
2
= - 3
= z Z
> > =
A A —
(] (@] T
g 8 3
<< < C
m m =
A 2 (w)
1<2] 124 >
o o m
= = <
—— —— ——
— LmAI
N J W
IR
Y
—_— A@AI

US 9,418,245 B2

Sheet 13 of 32

Aug. 16, 2016

U.S. Patent

ANE

aNnoy 4
NOILONN4 ANNOA

anNnoy (1-J)
NOILONN4 GNNOY

ANNOY ANOJS
NOILONN4 ANNOYH

ANNOY LS¥I4
NOILONNS ANNOY

[LIMI

US 9,418,245 B2

Sheet 14 of 32

Aug. 16, 2016

U.S. Patent

-

NOILONNS ANNOY

- .~

- -
RS

v

S

NOILYINI VO

XId1VAA XIHLVYA

NOILYINITVO

MOYHIYS

=

e

NOILYIND1IVO
XLV

.
~
~en

S S|{S}|S

NOILYINDTVO
XIHLVA

i Old

B P e

v 14%
v g0y

» 20Y

v L0y

v

US 9,418,245 B2

Sheet 15 of 32

Aug. 16, 2016

U.S. Patent

LINN ONILYHINTD AT
momv‘_ --- .
. 1 i LNdNI
18 (= : IX3INIVd oy A
< e <
1nd1no i 4 {Z0)x N JN |
DANHID gy | 7’8 ey 140 2 o 140
posX N7 i T
' {€0kx N » ao .\ 2T aoh
S : ”H_ us 9l
Pany < : . d
106S 7% Ay =g (v _ V g ()
\\w 1] us _|'j !
ke Do —l! D
T H— Y ;e =
< < " 41 41 4] < < <] <
0 aHo aHv dHo g aro afo afo a o a0 affo a o a[e
R GG IR IR
e
gow™

ATA

US 9,418,245 B2

Sheet 16 of 32

Aug. 16, 2016

U.S. Patent

Y4 aNnoy
e - LNdNI
18 (e [oamvd Ao
1NdLNO 2l (70} an) BN __>__ o%lem
IXILHIHID mw /8 oy 140 DH_ - g
r N C®
, Wa) < ~N R Y
73] fox A 7w () _ - _ ulo 0
" S 0o
2 Pany < Y JW fas
738 Uy 40 _ — ao
/
\ v Cm v
8 Z Y < n_s__ S
73 [\om ao —\. 1/
dNOYO ¥3LSIDTY)
. 1099
ol Old

US 9,418,245 B2

Sheet 17 of 32

Aug. 16, 2016

U.S. Patent

7

\m /U

(1 ;
' ! w| [gen
L 7] feox D3 >—D——{ oo
&3] ua gy
» Y 1 y
g0}x £ D W_I
m\&\:: Ny H__ - ao]
| b us >
Vs NN W <~
ﬁu 791U 2 T U a0
i 0y ua I , oky
& [[T
A LD I
gL/u 20N
s A ANNOY —EP
1028 ¥
9L/
s “+
€Z dNOYO ¥ILSIO TN
\\ \\
VTV
: €024
Ll "Old

US 9,418,245 B2

Sheet 18 of 32

Aug. 16, 2016

U.S. Patent

AT ONNOY HLIM
LINA NOILYIND VD 1INN NOISHIANOD LINA NOISHIANOD
) WVANM MVINIT-NON
£08X 208N 108S
f \ I'd A A Y { \
yd
791/4
\\
z L (N, » WU MLV by) .
“you “you /U P W ST L
y/u 79|/U
[v OV
Q3”OLS 38 OL $08I INTVA ILYIGTNNILNI
NOILONNA 4

g8l Old

U.S. Patent Aug. 16, 2016 Sheet 19 of 32 US 9,418,245 B2

1
<
Zla A
]
@]
D?DA
]
0| =
| 07
~| O
CKDA
o A 4
N
3 /2\ AN
o
o
(S YR :
DCOIA A :
N
D?OA o4 33
=) = =
Ool OA v g
) 2 il
- CED|A o () :
QD- —| 'é O o™
— Zla AlS S A S 1 i
L o ISLE AN
— =3 > :
S o il % Vo
= :
(o) :
| L 8 :
[© ISEdy i
«|c X \J
2 [AN [:
| S| »
3|© B
DCQA
wlC
<
~ o >
=YAERN 5 ‘
s |¢g

PLAINTEXT INPUT=>

US 9,418,245 B2

Sheet 20 of 32

Aug. 16, 2016

U.S. Patent

uonenuiiad punol

(SHA '7hA '€LK 2UA)

3

(08 8y)

ANNOY ! NOILONN4 ANNOY

(VLA OLA '64 '8f)

*

!
ﬁmwx 'Tix ‘€lx .N_‘xv _”5 A

€614

A:x ‘Olx ‘6x _mxv

161X

0c Ol

(LK ‘9K 'S ‘7A)

=

F 3

(EA 2K 1K ‘0K

Vemsamcammmanm ey

(€424 4y Op)
*
[0’y

?x ‘Ox Gy .vxv

MEE

(Ex ‘ex *hx ‘Ox)

US 9,418,245 B2

Sheet 21 of 32

A3X ANNOY 1INM

Aug. 16, 2016

U.S. Patent

HLIM LINN NOISYIANOD LINN NOISYIANOD
NOILYINDTVO HVANIT-NON LINN NOISHIANOD ¥V3ANITNON
HOX ANOO3S NEN 15414
GOLX €013 0L 101S
} f) r A \ }
2
S 7o
S \\
/ o 2N~ WU XRALYW yxy s -
v | A “4ou o, W Zyn | e
o/ S [
< Z
Q3¥OLS 38 01 $0LI INTVA ILYIGIWAILNI
NOILONN4 4

LZ ‘Ol

US 9,418,245 B2

Sheet 22 of 32

Aug. 16, 2016

U.S. Patent

PLLX
LR
........... T T ¢ Y
/TN TN TN
N N & A3X ANNOY
: {eoyx | |{zotx
V/ -- passsnssesannnnns wisssae '
W] S "y < < < < -S
L/ _mmn_O ww_m_ofn_o OMQO
L oW LS €LLS
P
1NdLNO LX3LHIHLID]
4 ol IR IR < L <<l W
D aHO g aFo a D aro aro afo a oDar aflo aj o @ uusaz:xﬂz_ia
¢¢ 9l

US 9,418,245 B2

Sheet 23 of 32

Aug. 16, 2016

U.S. Patent

LINN A3X GNNOY LINN
AT ONOOY NoISH3ANDD HLIM LIND LINN NOISHIANOD
\Quviowe MRIIN - NOHYIIgo NOGRNCO SO
HOX NS ezis SEIX TN 1218
Z 2 < Z
S | 79l/u 4"\0_‘\: S \o_‘\c
s % A £
/ 2N < DL (N e | |XELIVAL: I N .
ST A z p/u v/ Nl S =< S L
/U S | Zg,/u y/u m\m:\cm IV
2 —le M1+ L e -
[Ny S " 7gu I Z91/U ,N S [T
a3¥0LS$ 39 01 ¥Z11 INTVA ILYIGIWHIINI
NOLLONNA 4

€¢ 9Old

US 9,418,245 B2

Sheet 24 of 32

Aug. 16, 2016

U.S. Patent

YELX
Fa Y
GE1X
7, S
[0V 4\
>mx DZDom m -------- .N-m-r-E. -- m
: WA . v : ey
: 4 g , A ONNOY
x| [feorx
... -
vS_J o S uy A A -S
v\ ykg_DO NW_QOF‘W_DO OMDO
o VIS €E1S
91X~
N VNW
1nd1N0 JE%E_O o
Ar<4r<4a< < IR I I
0 aHo aHe aHe arW o aHo aMo af o @ 0 a0 a0 af (o g\ e LndNI XNV

v¢ Old

US 9,418,245 B2

Sheet 25 of 32

Aug. 16, 2016

U.S. Patent

AZY ANNOY HLIM
LINNNOISYIANOO LINN NOISYIANOO LINA NOILYINDI¥O
VNI ¥V3NIT-NON 20X
U 718 £71X
4 \ — }
Z P pa S |t
79U L 79l/u
\\ ¢ \\ S | \\
A V- WU pavwexy | F WY A B P R
v/u v/u L, W 2R g N2 “y/u y/u y/u
79170 MECTE 79170 o/
p4 i Z i Zz [
79170 T LS [7ou 15k

@3401S 38 OL #yLI 3NTVA 3LVIQIWHILNI

G¢ Old

NOILONNA 4

US 9,418,245 B2

Sheet 26 of 32

Aug. 16, 2016

U.S. Patent

SN
; M TN T
NS\ ,J\
eorx | [{zorx
o J A kbl .
any ’ -S an
] Gmmoo orla o rylo o ogla o 11
SIS £SI5
'™y My
A3Y ANNOY A ANNOY
951X —— |
W wmw
1NdLNO LX3LHIHAID |
< Ardr<dr< | r4r< n
o aHo aHo aFo aFA o a1 aHo ao a o al 1o al o al o a\ f=LinaNi LX3INIVId
vy N 9y Ly N By Ohy by by Ehy vy Shy N
9¢ 9l

US 9,418,245 B2

Sheet 27 of 32

Aug. 16, 2016

U.S. Patent

A ANNOY
HLIM 1INN SO1S
NOILVINOTVYO LINN 1915 191S
40X NOISY3IANOD 1INN NOISYIANOD LINN NOISH3IANOD
GalXx AVINIT-NON S HVINIT-NON ONOJ3S ¥VINIT-NON 1Syl
— — " A ——
FANLONYLS OZ_MEmn_m_m 13ATT-S
£ (Dye)l ﬁ . AP’
Q0% Qi ui 2 S
s| S
S\% W 9l/up
4 L A L a A
s \._/“\\ gl u E\:m g/u “9lu gL/u “glsu D,
174 R 74 wu L, o~ N p/ul “p/u
74 Q0% \mf\cm \S\CJKJ@—\C
[S S
4 1
Sl/uy w SlL/uy gy
/ /] i] "L /] \\ . d 4
gl/u T T gL/u " glu gy T gpu
(03401S 38 OL1 ¥9LI ANTVA JLVIAIWHTLNI
NOILONNS 4

L¢ Old

US 9,418,245 B2

Sheet 28 of 32

Aug. 16, 2016

U.S. Patent

IZAE

1% A2 aNNOY ——EP)

-

0d

—

0d

(Y

P

EﬁDA

%

mm

0

«—1{1dNI IX3INIV1d

1Nd1N0 1X31H3HdID ot
1L << [w
o aMo aMo a o a~ 1o aMe al o a o d\ E
By 6y Oy vy chy thy Ty Sy I_
8¢ 9ld

US 9,418,245 B2

Sheet 29 of 32

Aug. 16, 2016

U.S. Patent

A ONNOY
HLIM LINN s81S
NOILYINOTVD LINN 1813 1818
MOX NOISHIANOD LINNNOISYIANOD ~ LINN NOISHIANOD
G8IX YVANITNONS MVANIT-NONGNOD3S MVANITNON 15414
— ——t— —t— —t—
FAUNLONYLS ONILYIdTY 1373 TS
A . A~
GF m 9}/
A
\\ w | m see \\
I P W, 9lsu 9l/u w ol/u Lo
b/u| “pu Wyl N P /Ul “p/u
i gk el \/ B/
[Nivy !
Ao /)
7S A LS 7 7~
=g ui R gL u=-"g1u oL/ 9l U
Q3HOLS 39 0L ¥811 INWA FLYIATNHIINI
NOILONNA 4
6¢ Old

US 9,418,245 B2

Sheet 30 of 32

Aug. 16, 2016

U.S. Patent

uonejnuiad punol

g/u g/u gru &Y g/u 8/u 8/u
‘(.«
\ ,

8 g/u 8/u g/u 8/ g/ 8/u g/u /
an VN 1 e T s W e R R
%) T]

T 1
p s iy A P oy
0€ 9Old

S14vd OML
OLNId3ding

US 9,418,245 B2

Sheet 31 of 32

Aug. 16, 2016

U.S. Patent

............. NS
T TN F4
T—P—4
{€o}x | [{eotx
W_ s y < < <
¥ oo™ oo fa o jao
£ A l
I S N N N 3025
902X~
Cvﬂw
—— 1Nd1NO 1XAL4THAID & ched
‘ ‘ ex ([
4 < 41| < + < \73 .
s aHo aHo aHo a-W 1o aHo aHo o a—o dHo al o d oot " LNeNl IXALNIVTd
Sy % 4y 8y 6y Oy MY chy ey vy Sy /‘\
4] A3M ANNOY
Hed L€ "Old

US 9,418,245 B2

Sheet 32 of 32

Aug. 16, 2016

U.S. Patent

004

NOLVYINIO ey LN ONIAIFO T |
Y39GWNN — /NOISSINSNVH L
W WOANVY
¥0. N
LINN -~
ONISSTOONd I
W NOILAANON
€0/
AJOWIN |e—dle—> NdD N
W 10/
201
JINAOW 21
¢ 9Old

US 9,418,245 B2

1

ENCRYPTION PROCESSING DEVICE,
ENCRYPTION PROCESSING METHOD, AND
PROGRAM

TECHNICAL FIELD

The present disclosure relates to an encryption processing
device, an encryption processing method, and a program.
More specifically, this relates to an encryption processing
device, an encryption processing method, and a program for
executing shared key encryption.

BACKGROUND ART

Asthe information society continues to develop, the neces-
sity of information security technologies for securely protect-
ing information used increases. One configuration element of
information security technologies are encryption technolo-
gies, and encryption technologies are currently used by vari-
ous products and systems.

Though there are various types of encryption processing
algorithms, one of the basic technologies is called a shared
key block encryption. According to the shared key block
encryption, a key for encryption and a key for decryption are
shared items. In both the encryption processing and the
decryption processing, multiple keys are generated from
these shared keys, and a data conversion processing is repeat-
edly executed in block data units of a certain block unit such
as 64 bits, 128 bits, 256 bits, or other.

DES (Data Encryption Standard), which was the previous
US standard, and AES (Advanced Encryption Standard),
which is the current US standard, are known as representative
shared key block encryption algorithms. Other various shared
key block encryptions continue to be proposed, and the CLE-
FIA proposed by Sony Corporation in 2007 is also a shared
key block encryption.

These kind of shared key block encryption algorithms are
mainly configured with an encryption processing unit includ-
ing a round function execution unit for repeatedly executing
conversions of input data, and a key scheduling unit for gen-
erating round keys to be applied at each round regarding the
round function unit. The key scheduling unit first generates an
expanded key in which the bit count is increased on the basis
of a master key (master key), which is a secret key, and
generates round keys (secondary keys) to be applied at each
round function unit regarding the encryption processing unit,
based on the generated expanded key.

Configurations for repeatedly executing the round function
including linear conversion units and non-linear conversion
units are known as specific configurations of these kinds of
algorithms. Representative structures include the Feistel
structure and the expanded Feistel structure, for example. The
Feistel structure and the expanded Feistel structure include
structures that convert plaintext into ciphertext by the repeti-
tion of a simple round function including an F function as a
data conversion function. The linear conversion processing
and the non-linear conversion processing are executed by the
F function. Further, NPL 1 and NPL 2 are examples of litera-
ture which discloses encryption processing applying the Feis-
tel structure and the expanded Feistel structure.

There are two types of embodiments of encryption algo-
rithms, software implementations and hardware implementa-
tions. With hardware implementations, costs can be reduced
and low energy consumption can be expected when imple-
menting as hardware by designing the implementation so that
the circuit scale is as small as possible. For this reason, regard-

10

15

20

25

30

35

40

45

50

55

60

65

2

less of whether new algorithms or existing algorithms, vari-
ous implementation methods for miniaturization have been
proposed.

For example, a miniaturization method corresponding to
an AES encryption having a Substitution Permutation Net-
work (SPN) structure is proposed by Hamalainen, Alho, Han-
nikainen, Hamalainen, et al. Details about this miniaturiza-
tion method are disclosed in NPL 3 “Panu Hamalainen, Timo
Alho, Marko Hannikainen, and Timo D. Hamalainen. Design
and implementation of low-area and low-power AES encryp-
tion hardware core. In DSD, pages 577-583. IEEE Computer
Society, 2006. 9”.

According to this disclosed implementation method, min-
iaturization of the circuit scale is achieved by processing AES
128-bit block encryption in calculation units of every 8 bits.
The implementation method from Hamalainen, et al. can also
be applied to CLEFIA and others having an expanded Feistel
structure, which is different from the SPN structure.

However, if the existing technique is applied simplistically,
in addition to block length worth of registers, registers nec-
essary for storing intermediate values of F function calcula-
tions in the non-linear processing unit increase. For example,
when considering an application into CLEFIA, in addition to
128 bits worth of block length registers, 32 bits worth of
registers also increase.

CITATION LIST
Non Patent Literature

NPL 1: K. Nyberg, “Generalized Feistel Networks”, ASIA-
CRYPT ’96, SpringerVerlag, 1996, pp. 91-104.

NPL 2: Yuliang Zheng, Tsutomu Matsumoto, Hideki Imai:
On the Construction of Block Ciphers Provably Secure and
Not Relying on Any Unproved Hypotheses. CRYPTO
1989: 461-480.

NPL 3: Panu Hamalainen, Timo Alho, Marko Hannikainen,
and Timo D. Hamalainen. Design and implementation of
low-area and low-power AES encryption hardware core. In
DSD, pages 577-583. IEEE Computer Society, 2006. 9.

SUMMARY OF INVENTION
Technical Problem

The present disclosure is the result of considering the pre-
viously described situation, for example, and aims to provide
an encryption processing device, an encryption processing
method, and a program that can achieve a hardware configu-
ration in which a miniaturization smaller than that of the
existing technique can be expected regarding encryption
algorithms having expanded Feistel structures such as CLE-
FIA, for example.

Solution to Problem

Specifically, an implementation method in which registers
other than that for the block length are not required is
achieved by inserting a circuit to decode the input into the F
function from the intermediate values of an F function cur-
rently in calculation, for example. As a result, miniaturization
of the circuit scale can be expected due to the result in the
reductions of registers by this structure.

Solution to Problem

A first aspect of the present disclosure is an encryption
processing device including:

US 9,418,245 B2

3

an encryption processing unit configured to divide and
input configuration bits of data to be data processed into a
plurality of lines, and to repeatedly execute data conversion
processing of data for each line;

wherein the encryption processing unit includes

an F function execution unit to input data from one line

configuring the plurality of lines,

an XOR calculation unit to execute an XOR calculation

with other lines of data corresponding to the output from
the F function,

an intermediate data storage register to store intermediate

data during the process of generating converted data in
the F function execution unit, and

an inverse calculation executing unit to calculate input data

regarding the F function execution unit on the basis of
the data stored in the intermediate storage register.

Further, regarding an embodiment of the encryption pro-
cessing device according to the present disclosure, the F
function execution unit includes an S-box to execute non-
linear conversion processing of input data for the F function
execution unit, the intermediate data storage register stores
the output value from the S-box as the intermediate data, and
the inverse calculation executing unit calculates the input data
for the F function execution unit by a calculation processing
including an inverse calculation of the non-linear conversion
processing via the S-box.

Further, regarding an embodiment of the encryption pro-
cessing device according to the present disclosure, the F
function execution unit includes a non-linear conversion unit
and a linear conversion unit, includes a register to store the
output from the non-linear conversion unit as the intermediate
data, the linear conversion unit executes linear conversion
processing on the values stored in the register, and the inverse
calculation unit calculates the input data for the F function by
a calculation processing on the values stored in the register.

Further, regarding an embodiment of the encryption pro-
cessing device according to the present disclosure, the F
function execution unit executes non-linear conversion pro-
cessing in the non-linear conversion unit on input correspond-
ing to the F function execution unit, and further is an SP type
of F function to execute the linear conversion processing in
the linear conversion unit.

Further, regarding an embodiment of the encryption pro-
cessing device according to the present disclosure, the F
function execution unit executes non-linear conversion pro-
cessing in the non-linear conversion unit on input correspond-
ing to the F function execution unit, and further is an SPS type
of F function to execute the linear conversion processing in
the linear conversion unit.

Further, regarding an embodiment of the encryption pro-
cessing device according to the present disclosure, the F
function execution unit includes an XOR calculation unit
with the round key input externally.

Further, regarding an embodiment of the encryption pro-
cessing device according to the present disclosure, the F
function execution unit includes a repeating structure of a
plurality of non-linear calculation units.

Further, regarding an embodiment of the encryption pro-
cessing device according to the present disclosure, the
encryption processing unit executes encryption processing to
convert plaintext as the input data into ciphertext, and
executes decryption processing to convert ciphertext as the
input data into plaintext.

Further, a second aspect of the present disclosure is an
encryption processing method to be executed in an encryption
processing device, the encryption processing method includ-
ing:

10

20

25

30

35

40

45

50

55

60

65

4

an encryption processing step in which an encryption pro-
cessing unit is configured to divide and input configuration
bits of data to be data processed into a plurality of lines, and
to repeatedly execute data conversion processing of data for
each line;

wherein the encryption processing step includes

an F function execution step to input data from one line
configuring the plurality of lines and generate converted
data,

an XOR calculation step to execute an XOR calculation
with other lines of data corresponding to the output from
the F function,

a step to store intermediate data intermediate data in an
intermediate data storage register during the process of
generating converted data in the F function execution
unit, and

an inverse calculation executing step to calculate input data
regarding the F function execution unit on the basis of
the data stored in the intermediate storage register.

Further, a third aspect of the present disclosure is a program
to execute encryption processing in an encryption processing
device, the program including:

an encryption processing step in which an encryption pro-
cessing unit is configured to divide and input configuration
bits of data to be data processed into a plurality of lines, and
to repeatedly execute data conversion processing of data for
each line;

wherein the encryption processing step includes

an F function execution step to input data from one line
configuring the plurality of lines and generate converted
data,

an XOR calculation step to execute an XOR calculation
with other lines of data corresponding to the output from
the F function,

a step to store intermediate data intermediate data in an
intermediate data storage register during the process of
generating converted data in the F function execution
unit, and

an inverse calculation executing step to calculate input data
regarding the F function execution unit on the basis of
the data stored in the intermediate storage register.

Further, the program according to the present disclosure is
a program supplied to a computer system or information
processing device capable of executing various program
code, for example, by a recording medium, for example. The
processing is achieved through the program by executing this
kind of program with program executing unit in the informa-
tion processing device or computer system.

Other objects, features, and advantages of the present dis-
closure will become clear by the detailed descriptions based
on the embodiments of the present invention described later
and the attached drawings. Further, the system regarding the
present specification is a logical combination configuration of
multiple devices, and so each configuration of the devices is
not limited to being housed within the same physical unit.

Advantageous Effects of Invention

According to the embodiments of the present disclosure,
miniaturization of the encryption processing configuration is
achieved.

Specifically, included is an encryption processing unit con-
figured to divide and input configuration bits of data to be data
processed into a plurality of lines, and to repeatedly execute
data conversion processing of data for each line, wherein the
encryption processing unit includes an F function execution
unit to input data from one line configuring the plurality of

US 9,418,245 B2

5

lines, an XOR calculation unit to execute an XOR calculation
with other lines of data corresponding to the output from the
F function, an intermediate data storage register to store inter-
mediate data during the process of generating converted data
in the F function execution unit, and an inverse calculation
executing unit to calculate input data regarding the F function
execution unit on the basis of the data stored in the interme-
diate storage register. The input values for the F function
execution unit are calculable by the inverse calculation in the
inverse calculation executing unit, which enables reduction in
registers for storing this data, and so miniaturization of the
encryption processing configuration is achieved.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram describing an n-bit shared key block
encryption algorithm corresponding to a key length ofk bits.

FIG. 2 is a diagram describing a decryption algorithm
corresponding to the n-bit shared key block encryption algo-
rithm corresponding to a key length of k bits, illustrated in
FIG. 1.

FIG. 3 is a diagram describing a relationship between a key
scheduling unit and a data encryption unit.

FIG. 4 is a diagram describing an example configuration of
the data encryption unit.

FIG. 5 is a diagram describing an example of an SPN
structure round function.

FIG. 6 is a diagram describing an example of a Feistel
structure round function.

FIG. 7 is a diagram describing an example of an expanded
Feistel structure.

FIG. 8 is a diagram describing an example of an expanded
Feistel structure.

FIG. 9 is a diagram describing an example configuration of
a non-linear conversion unit.

FIG. 10 is a diagram describing an example configuration
of a linear conversion processing unit.

FIG. 11 is a diagram describing a shared key block encryp-
tion.

FIG. 12 is a diagram describing a Feistel structure.

FIG. 13 is a diagram describing an expanded Feistel struc-
ture.

FIG. 14 is a diagram describing a structure of a round
function in an AES encryption algorithm applying an SPN
structure.

FIG. 15 is a diagram illustrating a data path of a data
encryption unit executing the AES encryption proposed by
Hamalainen, et al.

FIG. 16 is a diagram describing a configuration example of
a data encryption unit.

FIG. 17 is a diagram illustrating an overview diagram of a
data calculation unit circuit when applying the implementa-
tion method from Hamalainen, et al. to a 4-line expanded
Feistel structure.

FIG. 18 is a diagram describing a specific example of an F
function within the round function.

FIG. 19 is a diagram illustrating an overview diagram of a
data calculation unit circuit when applying an encryption
processing configuration related to an embodiment of the
present disclosure to a 4-line expanded Feistel structure hav-
ing the F function illustrated in FIG. 18.

FIG. 20 is a diagram describing a round function.

FIG. 21 is a diagram describing an SPS type of F function.

FIG. 22 is a diagram describing an example of a possible
data path when applying the method according to the present
disclosure to the SPS type of F function disclosed in FIG. 21.

15

25

30

35

40

45

55

6

FIG. 23 is a diagram describing the SPS type of F function
to which multiple key insertions are input.

FIG. 24 is a diagram describing an example of a possible
data path when applying the method according to the present
disclosure to the SPS type of F function disclosed in FIG. 23.

FIG. 25 is a diagram describing an SP type of F function
that is immediately after the key insertion is input into the F
function.

FIG. 26 is a diagram describing an example of a possible
data path when applying the method according to the present
disclosure to the SP type of F function disclosed in FIG. 25.

FIG. 27 is a diagram describing an example configuration
of an F function.

FIG. 28 is a diagram describing an example of a possible
data path when applying the method according to the present
disclosure to the F function disclosed in FIG. 27.

FIG. 29 is a diagram describing a configuration example of
an F function.

FIG. 30 is a diagram describing a configuration example of
one round permutation.

FIG. 31 is a diagram describing an example of a possible
data path when applying the method according to the present
disclosure to the configuration having a round permutation
disclosed in FIG. 30.

FIG. 32 is a diagram illustrating an example configuration
of'an IC module 700 as the encryption processing device.

DESCRIPTION OF EMBODIMENTS

Hereafter, an encryption processing device, an encryption
processing method, and a program related to the present
disclosure will be described in detail with reference to the
drawings. The description will occur according to the follow-
ing items.

1. Shared Key Block Encryption Overview

2. Overview of Shared Key Block Encryption Structures and
Miniaturization Implementation Methods According to the
Related Art

3. Example of Encryption Processing Configurations Achiev-
ing Reductions in Registers

4. Summary of the Advantages of the Technique According to
the Present Disclosure

5. Other Embodiments

6. Configuration Examples of Encryption Processing Devices
7. Conclusion Regarding Configuration of the Present Dis-
closure

1. Shared Key Block Encryption Overview

First, an overview of shared key block encryption will be
described.

(1-1. Shared Key Block Encryption)

The following definition specifies that which designates
shared key block encryption here (hereafter, block encryp-
tion).

Block encryption obtains a plaintext P and akey K as input,
and outputs a ciphertext C. The bit length of the plaintext and
the ciphertext is called a block size, which is written as n. n is
an arbitrary integer value that is normally one value deter-
mined beforehand for each block encryption algorithm. This
case in which the block length is an n block encryption is
sometimes called an n-bit block encryption.

The bit length of the key is expressed as k. The key has an
arbitrary integer value. The shared key block encryption algo-
rithm can support one or multiple key sizes. For example, for

US 9,418,245 B2

7

some block encryption algorithm A, the block size is n=128,
and so a configuration is possible which supports a key size of
k=128, k=192, or k=256.

Plaintext P: n bits

Ciphertext C: n bits

Key K: k bits

FIG. 1 illustrates a diagram of an n-bit shared key block
encryption algorithm E corresponding to a key length of k
bits.

A decryption algorithm D corresponding to the encryption
algorithm E can be defined an inverse function E~' of the
encryption algorithm E, which receives the ciphertext C and
key K as the input, and outputs the plaintext P. FIG. 2 illus-
trates a diagram of the decryption algorithm D corresponding
to the encryption algorithm E illustrated in FIG. 1.

(1-2. Internal Configuration)

The block encryption thought of as a division into two
portions. One is a “key scheduling unit” to which the key K is
input, and outputs an expanded key K' (bit length k') by
expanding the bit length according to certain previously
determined steps, and the other is a “data encryption unit” that
receives the plaintext P and the key K' expanded from the key
scheduling unit, performs a data conversion, and outputs the
ciphertext C.

The relationship between these two portions is illustrated
in FIG. 3.

(1-3. Data Encryption Unit)

The data encryption unit used in the following embodi-
ments can be divided into processing units called round func-
tions. The round function receives two units of data as the
input, conducts processing internally, and outputs one unit of
data. One part of the input data is an n-bit data currently being
encrypted, which results in a configuration in which the out-
put from the round function for some round is supplied as the
input for the next round. The other part of the input data is
used as data for a portion of the expanded key output from the
key scheduler, and this key data is called the round key. Also,
the total number of round functions is called the total round
number, and is a value determined beforehand for each
encryption algorithm. Here, the total round number is
expressed as R.

An overview of the data encryption unit is illustrated as in
FIG. 4 when looking from the input side of the data encryp-
tion unit in which the input data for the first round is desig-
nated as X, the data input in the round function for an i
number of rounds is designated as X,, and the round key is
designated as RK,.

(1-4. Round Function)

The round function can have various forms depending on
the block encryption algorithm. The round function can be
classified by the structure adopted by this encryption algo-
rithm. Typical structures used here as examples are SPN
structures, Feistel structures, and expanded Feistel structures.

(A) SPN Structure Round Function

This structure applies linear conversion processing, non-
linear conversion, and XOR calculations on the round key and
all of the n-bit input data. The order of each calculation is not
particularly determined. FIG. 5 illustrates an example of an
SPN structure round function.

(B) Feistel Structure

The n-bit input data is divided into two units of n/2-bit data.
A function (F function) is applied with one part of this data
and the round key as the input, and the output and the other
part ofthe datais XOR calculated. The result of shuffling both
sides of this data becomes the output data. Though there are
various types of internal configuration of the F function, but
these are basically achieved similarly to the SPN structure

10

15

20

25

30

35

40

45

50

55

60

65

8

with a combination of XOR calculations with the round key
data, non-linear calculations, and linear conversions. FIG. 6
illustrates an example of a Feistel structure round function.

(C) Expanded Feistel Structure

The data division number of two regarding the Feistel
structure is expanded into a format of three or more divisions
with the expanded Feistel structure. If the division number is
designated as d, then various expanded Feistel structures can
be defined depending on d. As the size if the F function input
and output is relatively smaller, this is suited for small imple-
mentations. FIG. 7 illustrates an example of an expanded
Feistel structure in which d=4, and two F functions are
applied in parallel within one round. Also, FIG. 8 illustrates
an example of an expanded Feistel structure in which d=8,
and one F function is applied within one round.

(1-5. Non-linear Conversion Processing Unit)

The implementation costs tend to increase as the size of the
input data increases for non-linear conversion processing
units. In order to circumvent this, many configurations are
used in which the corresponding data is divided into multiple
units, and non-linear conversion is conducted on this data. For
example, when the input size is designated as ms bits, these
configurations divide an m number of data units every s bits,
and perform non-linear conversions on this data in which the
input and output is s bits. The non-linear conversions in these
s-bit units are called S-boxes. FIG. 9 illustrates an example.

(1-6. Linear Conversion Processing Unit)

Linear conversion processing units can be defined as matri-
ces considering their nature. The elements of the matrix can
generally be expressed in various ways such as a body ele-
ment of GF (2%) and an element of GF (2). FIG. 10 illustrates
an example of a linear conversion processing unit defined by
amatrix of mxm, which defines the ms-bit input and output as
GF (2°).

2. Overview of Shared Key Block Encryption
Structures and Miniaturization Implementation
Methods According to the Related Art

Next, an overview of shared key block encryption struc-
tures and miniaturization implementation methods according
to the related art will be described.

Necessary terms will be described for the sake of the
descriptions regarding the encryption processing configura-
tions related to the present disclosure.

(2-1. Shared Key Block Encryption)

Shared key block encryption will be described again with
reference to FIG. 11. The shared key block encryption algo-
rithm is configured by a data encryption unit including a
round function repeatedly executing conversion of input data,
and a key scheduling unit generating round keys to be applied
at each round of a round function unit. The key scheduling
unit inputs the secret key, and generates round keys to be input
into each round function.

For example, regarding a block encryption with a configu-
ration that performs an r repetitions of round functions, round
keys RK1, RK2, . .., Rr are input into the round functions
from repetition 1 through repetition r. Also, an XOR is per-
formed on an IK as the initial key and an FK as the final key.

(2-2. Feistel Structure)

The Feistel structure will be described with reference to
FIG. 12. The Feistel structure is the typical structure for data
encryption units regarding shared key block encryption. FIG.
12 illustrates an example configuration of a specific Feistel
structure when the block length is n bits.

When looking at FIG. 12, the configuration enables the
n-bit data to be divided into two lines of n/2 bits, one line of

US 9,418,245 B2

9

these 1/2 bits is input into the F function within a round, and
an XOR is performed on this output and the other line of n/2
bits. Various types of F function configurations can be con-
sidered. As one example, configurations are known in which
processing is performed as in the F function illustrated in FIG.
12 such that an XOR is performed on the round key, a non-
linear calculation called an S-box is performed, and then a
linear conversion is performed by a matrix calculation.

Also, the configuration illustrated in FIG. 12 is one con-
figuration example of a Feistel structure, and other configu-
ration examples are possible by changing the position of the
XOR calculation on the IK and FK.

(2-3. Expanded Feistel Structure)

The expanded Feistel structure will be described with ref-
erence to FIG. 13. According to the previous description on
Feistel structures, the configuration performed a division into
two lines of n/2 bits and then processed this, but an expansion
to a form in which divisions into three or more lines is pos-
sible. For example, there is that called a 4-line expanded
Feistel structure that performs a division into four lines of n/4
bits and then processes this.

FIG. 13 illustrates a configuration example of a specific
4-line expanded Feistel structure. When looking at FIG. 13,
the configuration enables the n-bit data to be divided into four
lines of'n/4 bits, two of these lines are input into the F function
within a round, and an XOR is performed on this output and
the other two lines. By changing from a 2-line to a 4-line, a
round key RKi, the initial key IK, and the final key FK are
divided from n/2 bits into an RKi[0], an RKi[1], an IK[0], an
IK[1], an FKJ[0], and an FK[1] of n/4 bits. The previous
description was described regarding a 4-line expanded Feistel
structure, but all Feistel structures more than two lines are
called expanded Feistel structures. For the sake of clarity
regarding the description of the embodiments according to
the present disclosure, we will describe only 4-line Feistel
structures.

(2-4. Overview of and Problems with Miniaturization
Techniques According to the Related Art)

(2-4-1. Miniaturization Techniques Regarding AES
Encryption Algorithms Applying SPN Structures)

As previously described, Hamalainen, Alho, Hannikainen,
Hamalainen, et al. have proposed an AES miniaturization
method regarding AES encryption algorithms applying SPN
structures. NPL 3: Panu Hamalainen, Timo Alho, Marko
Hannikainen, and Timo D. Hamalainen. Design and imple-
mentation of low-area and low-power AES encryption hard-
ware core. In DSD, pages 577-583. IEEE Computer Society,
2006. 9.

First, a structure of a round function in an AES encryption
algorithm applying an SPN structure will be described with
reference to FIG. 14. Further, the configuration is similar to
Feistel structures regarding AES encryption algorithms
applying SPN structures in that a round functions is repeat-
edly executed multiple times. FIG. 14 is a diagram illustrating
a configuration example of a round function execution unit
used in an AES encryption algorithm applying an SPN struc-
ture. According to AES, the round function illustrated in FI1G.
14 is repeated multiple times to perform a generation of
ciphertext from plaintext and a generation of plaintext from
ciphertext.

The round function execution unit illustrated in FIG. 14 is
configured by the following configuration elements. A non-
linear conversion unit 401 made from 16 S-boxes with 8-bit
inputs and outputs for executing a non-linear conversion pro-
cessing, a ShiftRow executing unit 402 as the shuffling pro-
cessing of the 8-bit output from the S-boxes configuring the
non-linear conversion unit, a linear conversion unit 403 made

10

15

20

25

30

35

40

45

50

55

60

65

10

from four matrix calculating units for executing linear pro-
cessing applying matrices inputting the output of the
ShiftRow executing unit in 32-bit units, and an XOR calcu-
lation unit 404 made from four calculating units for executing
XOR calculations on 32-bit round keys against the 32-bit
output from each of the four matrix calculating units config-
uring the linear conversion unit 403.

The example illustrated in FIG. 14 is a 128-bit round func-
tion execution unit with 128-bit input and output, and is a
configuration that performs an input of a total of 8x16=128
bits into 16 8-bit S-boxes, and an output of a total of
32x4=128 bits to the four 32-bit XOR calculation units.

A series of processing applying the non-linear conversion
unit 401, the ShiftRow executing unit 402, the linear conver-
sionunit 403, and the XOR calculation unit 404 is executed as
the execution processing of one round function, and this
round function is repeated multiple times, to generate and
output 128-bit output (ciphertext for example) from 128-bit
input data (plaintext for example).

Regarding the implementation of AES, if the processing of
one round function (1 round), that is to say, the series of
processing applying the non-linear conversion unit 401, the
ShiftRow executing unit 402, the linear conversion unit 403,
and the XOR calculation unit 404, is executed at one cycle,
the configuration of the data encryption unit requires at least
the 16 S-box circuits and the four matrix calculation circuits,
as illustrated in FIG. 14.

Hamalainen, et al. achieved a miniaturization of the data
encryption unit by extended one round over 16 cycles.
According to this miniaturization configuration, miniaturiza-
tion of the matrix calculation circuit is achieved by using one
S-box circuit, and implementing one matrix calculation to
execute over four cycles.

FIG. 15 illustrates a data path for the data encryption unit
executing the AES encryption proposed by Hamalainen, et al.
The configuration illustrated in FIG. 15 corresponds to a
hardware configuration executing the AES encryption round
function illustrated in FIG. 14.

Regarding the configuration illustrated in FIG. 15, the data
being calculated is divided into 8-bit units, and each 8-bit data
is stored in registers RO through R18. There are 19 registers
illustrated in FIG. 15. Each of the 19 registers (RO through
R18) is an 8-bit register for storing 8-bit data. Per the descrip-
tion with reference to FIG. 14, the configuration illustrated in
FIG. 14 is a round function execution unit with 128-bit input
and output, and FIG. 15 corresponds to a hardware configu-
ration executing the round function with 128-bit input and
output as serial processing of data in 8-bit units.

Regarding the configuration in FIG. 15, the number of 8-bit
registers necessary for storing all of the input and output data
is 16 as 128/8=16, and so 16 registers are sufficient. There are
19 registers in FIG. 15 of which three of these registers are
more than necessary, but these three 24-bit registers are used
for the matrix calculation processing for executing the linear
conversion processing applying matrices.

Also, as described with reference to FIG. 14, according to
AES, data conversion is executed by a ShiftRow executing
unit between the S-box executing the non-linear conversion
and the matrix calculation executing the linear conversion.
According to the implementation technique from
Hamalainen, et al., replacement performed by the ShiftRow
executing unit is achieved by inserting multiplexors m01
through m08 before several of the registers in FIG. 15.

As illustrated in FIG. 15, an S501 is an S-box as the non-
linear conversion unit, of which there is only one. 8-bit data is
sequentially input into the S501, which is an S-box, and the
non-linear conversion processing is executed by 16 S-boxes

US 9,418,245 B2

11

illustrated in FIG. 14 over 16 cycles. The output of S501,
which is an S-box, is input into a matrix calculation circuit
M502, and the linear conversion processing is executed
applying a matrix by the matrix calculation circuit M502.

Further, according to the configuration in FIG. 14, the
configuration enables the matrix calculation to be performed
after the data to be processed by the S-box is replaced by the
ShiftRow executing unit, but according to the configuration
illustrated in FIG. 15, the configuration enables the output
from the S501, which is an S-box, to be input directly into the
matrix calculation circuit M502. According to the configura-
tion in FIG. 15, the processing corresponding to the replace-
ment processing by the ShiftRow executing unit is performed
by the operation of the multiplexors m01 through mO8 and the
registers RO through R18 illustrated in FIG. 15.

At the matrix calculation circuit M502 illustrated in FIG.
15, the processing of the four matrix calculation circuits in the
linear conversion unit 403 illustrated in FIG. 14 is sequen-
tially executed. The linear conversion processing is executed
over for four cycles applying a matrix to be executed by one
matrix calculation circuit from the four matrix calculation
circuits in the linear conversion unit 403 illustrated in FIG. 14.
The XOR calculation processing of the XOR calculation unit
404 illustrated in FIG. 14 is executed by an XOR calculation
unit X503 and X504. These XOR calculation units X503 and
X504 execute the XOR processing on the processing data and
the round key output by a key generating unit K505.

Further, in order to describe only a certain section funda-
mentally related to the configuration according to the present
disclosure, the circuit performing the replacement such as
ShiftRow and the key scheduling unit is described by an
abbreviated data path as illustrated in FIG. 16. The portion
described regarding the group of registers in FIG. 16 store 96
bits worth of data, and represent a group of registers with
consideration to the ShiftRow. Regarding the implementation
of AES, when calculating one round at one cycle, the registers
to be used for the data encryption unit only need to be 128 bits
worth, which is the block length.

Conversely, according to the implementation method from
Hamalainen, et al., this is increased by 24 bits to 152 bits
worth. This is because it becomes necessary to store 32 bits
worth of calculation results currently processing until the end
of the calculation of the matrix when dividing the input into
the matrix every eight bits. For this reason, it is obvious that
32 bits worth of registers are added. Conversely, the values to
be input into the matrix are necessary for the next round.
When considering this, 8 bits worth of the register for the first
input from this 32 bits to be input into the matrix can be shared
with the registers for the matrix calculation unit, and so the
amount of increase in the registers is

32-8=24 bits

to which the increase is suppressed.

(2-4-2. Problem with Application of Miniaturization
Implementation Configuration for SPN Structures to
Expanded Feistel Structures)

As previously described, Hamalainen, et al. have achieved
a miniaturization of SPN structures. However, this miniatur-
ization configuration is a specialized configuration corre-
sponding to SPN structures, and so a sufficient advantage
cannot be obtained when applying this miniaturization imple-
mentation method to expanded Feistel structures.

The following will describe these problems. Further,
according to the following description, the expanded Feistel
structure will be described as that conceptually including
Feistel structures. When applying the implementation
method from Hamalainen, et al. to the configuration execut-

10

15

20

25

30

40

45

50

55

60

65

12

ing an algorithm such as CLEFIA having an expanded Feistel
structure, registers are necessary for storing the data amount
of the bit length of the output from the matrix in order to
calculate the matrix.

This is because expanded Feistel structures are different
from SPN structures, for example, it is necessary to use the
value input into the F function in the round function in the
next round as well, and this fundamental difference with this
processing sequence is a problem.

FIG. 17 is a diagram illustrating an overview diagram of a
data calculating circuit when applying the implementation
method from Hamalainen, et al. to the 4-line expanded Feistel
structure. According to FIG. 17, the replacement operation
and key scheduling unit at the end of the round function in the
expanded Feistel structure are omitted, which is similar to the
AES data path previously described with reference to FIG.
16. Further, the block size for the size of processing data in the
round calculation is n bits.

As previously described with reference to FIG. 13, accord-
ing to the 4-line expanded Feistel structure, n/4 bits are input
into each of the four lines and then sequentially transferred. A
register group R703 as in FIG. 17 corresponds to a register
group R601 illustrated in FIG. 16. However, the register
group R703 as in FIG. 17 corresponding to the 4-line
expanded Feistel structure is configured as a combination of
registers for storing the (34)n bits worth of data and a multi-
plexor, etc. for achieving a processing similar to the replace-
ment operation at the end of a round.

Further, the calculation applying and executing the data
path (calculation executing circuit) for the encryption algo-
rithm applying the 4-line expanded Feistel structure illus-
trated in FIG. 17 corresponds to the calculation processing
applying the 4-line expanded Feistel structure illustrated in
FIG. 13. Thus, the round function including an F function
within the 4-line expanded Feistel structure illustrated in F1G.
13 is executed using this data path illustrated in FIG. 17.

FIG. 18 illustrates a specific example of an F function
within a round function. The F function illustrated in FIG. 18
has the following configuration elements.

A non-linear conversion unit S801 made from an S-box

executing non-linear processing,

an M802 performing a linear conversion processing by a

matrix calculation against the output from the non-linear
conversion unit S801, and

an XOR calculation unit X803 for executing an XOR cal-

culation with the round key against the output from the
linear conversion unit M802,

and so these are the previously described configuration

elements. The F function illustrated in FIG. 18 is called
an SP type of F function.

However, the input and output corresponding to the F func-
tion regarding the 4-line expanded Feistel structure is n/4 bits.
Further, a linear conversion unit M801 illustrated in FIG. 18
is assumed to be a cyclic matrix as illustrated below (Expres-
sion 1), which is similar to the matrix adopted by the AES
encryption algorithm.

[Math. 1]
Yo 0x02 0x03 0x01 0x01 Y/ xo (Expression 1)
y1 0x01 0x02 0x03 Ox01 [x;
yo | [0x01 0x01 0x02 0x03 [x,
3 0x03 0x01 0x01 Ox02 N\ x3

US 9,418,245 B2

13

Further, the (x,, X;, X,, and X,) illustrated in Expression 1
correspond to the input corresponding to the linear conver-
sion unit M801, which is the matrix calculating circuit, (out-
put from the S-box)

the (y,, ¥y, ¥2, and y;) correspond to the output from the

linear conversion unit M801, which is the matrix calcu-
lating circuit (linear conversion result),

and the 4x4 matrix corresponds to the matrix applied in the

linear conversion unit M801, which is the matrix calcu-
lating circuit.

Further, the elements in the 4x4 matrix represent hexadeci-
mal values.

According to the present example, each of the (x,, X;, X,,
and x;) is 8-bit data which is the output from the S-box
corresponding to one cycle. Each of the output (y,, v,, v, and
y;) is also 8-bit data.

As we will be comparing this with the configuration of the
AES encryption algorithm previously described with refer-
ence to FIG. 14 through FIG. 16, the block configuration bits
n is designated as n=128 bits as the processing unit.

Similar to the circuit illustrated in FIG. 16, the circuit
illustrated in FIG. 17 also has only one S-box. This is the
S701, which is an S-box, illustrated in FIG. 17. This S701,
which is an S-box, executes over one cycle the processing of
one S-box configured within the F function illustrated in FIG.
18.

The processing of each S-box illustrated in FIG. 18 is
performed sequentially every cycle.

As illustrated in FIG. 18, Y4 of the n/4 bits transferred to
line of the 4-line expanded Feistel structure, that is to say,
n/16 bits are input into one S-box in the F function, and the
non-linear conversion processing is executed.

1/16 bits are input into the S-box S701 illustrated in FIG.
17 every cycle, and the non-linear conversion processing is
executed. The data non-linearly converted in the S701, which
is an S-box, is input into a linear conversion circuit M702,
which is next, every n/16 bits at one-cycle units. The linear
conversion processing applying a previously determined
matrix is executed by the linear conversion circuit M702.

We will now compare a calculation executing circuit
excluding the register group R703 within the data path con-
figuration of the encryption algorithm applying the 4-line
expanded Feistel structure illustrated in FIG. 17 and a calcu-
lation executing circuit excluding the register group R601
described with reference to FIG. 16, executing the AES
encryption processing using the SPN structure.

The eight 8-bit registers RO through R3 and R16 through
R19 according to the calculating circuit illustrated in FIG. 17
correspond to the seven 8-bit registers RO throughR3 and R16
through R18 according to the calculation circuit illustrated in
FIG. 16. That is to say, the number of 8-bit registers is
increased by one.

In this way, when applying the configuration proposed by
Hamalainen, et al. to the expanded Feistel structure, in addi-
tion to the block length worth of registers, I-line worth of
registers is also necessary, as with the calculating circuit
illustrated in FIG. 17. The increase in registers has a signifi-
cant effect on the circuit scale, and so it is preferable if a
configuration is possible which only has the block length
worth of registers.

The following issues are examples of the problems with the
technique according to the related art.

The circuit scale of the registers is comparatively larger
when compared to other cells, and the increase in the number
ofregisters has a significant effect on the circuit scale. For this
reason, an implementation method restricting the increase in
registers can be considered as one direction for achieving

10

20

25

40

45

50

55

60

14

miniaturization. According to the implementation method
regarding the technique according to the related art, registers
more than the block length amount are necessary, which can
be considered a problem.

3. Example of Encryption Processing Configurations
Achieving Reductions in Registers

When the implementation method from Hamalainen, et al.
is applied to an algorithm having an expanded Feistel struc-
ture, the necessary registers increases as described in the
previous section. This is because the output of the F function
is calculated while the input for the F function is still being
stored as the input for the F function is used at the next round.
When implementation under this conception, both the regis-
ters storing the input for the F function and the registers for
storing the intermediate values during the F function calcu-
lation are necessary.

According to the encryption algorithm applying the 4-line
expanded Feistel structure previously described using FIG.
17 and FIG. 18, in addition to the block length worth of
registers, a 32-bit register, which is I-line worth, is necessary
as it is necessary to store the intermediate value during the
matrix calculation expressed by the linear conversion unit
M802 within the F function.

According to the embodiments to be described later, the
input for the F function is deleted once, and the registers
storing this input are used as registers for storing the interme-
diate values during the F function calculation.

After executing an XOR on the output values of the F
function and a different line from the lines input into the F
function, it has been considered to restore the input for the F
function from the intermediate values during the F function
calculation.

By doing so in this way, simultaneously storing the input
values for the F function and the intermediate values during
the F function calculation is no longer necessary, and the
number of registers can be reduced.

Hereafter, a specific example will be described. In order to
easily compare this with the previously described configura-
tion, an example of a 4-line expanded Feistel structure having
the F function illustrated in FIG. 18 will be described. Further,
the linear conversion unit M801 illustrated in FIG. 18 is
assumed to be a cyclic matrix expressed by the following
(Expression 2), which is similar to the matrix adopted by the
AES encryption algorithm.

[Math. 2]
Yo 0x02 0x03 0x01 Ox01Y{ xo (Expression 2)
y1 0x01 0x02 0x03 0x01 || x;
y2 | 7| 0x01 0x01 0x02 0x03 || x,
3 0x03 0x01 0x01 Ox02 A x3

FIG.19 is an overview diagram of a data calculating circuit
when applying the encryption processing configuration
related to an embodiment of the present disclosure to the
4-line Feistel structure having the F function illustrated in
FIG. 18.

As introduced in the previously described section (2-4-2.
Problem with Application of Miniaturization Implementation
Configuration for SPN Structures to Expanded Feistel Struc-
tures), when applying the implementation method from
Hamalainen, et al. to the 4-line expanded Feistel structure
having the F function illustrated in FIG. 18, the registers for

US 9,418,245 B2

15

storing the intermediate values during the matrix calculation
expressed by the linear conversion unit M802 within the F
function as in FIG. 18 are necessary.

In contrast, the values to be input into the linear conversion
unit M802 after the non-linear conversion unit S801 are
stored as the intermediate values as in FIG. 19 in which the
encryption processing configuration related to an embodi-
ment according to the present disclosure is used to achieve
this. The intermediate value to be stored by this technique is
represented as an intermediate value 1804 for storing as in
FIG. 18. According to FIG. 19, the previously described
intermediate values are stored in registers represented by RO
through R3 illustrated in FIG. 19.

Also, when the implementation method from Hamalainen,
etal. is applied to the 4-line expanded Feistel structure having
the F function illustrated in FIG. 18, registers necessary for
storing the input values for the F function which are necessary
for calculating the next round become necessary, in addition
to the registers for storing the intermediate values during the
matrix calculation expressed by the linear conversion unit
M802 within the F function as in FIG. 18. In contrast, in FIG.
19 the input values for the F function necessary for calculat-
ing the next round are not stored, and instead the intermediate
value 1804, which is the value to be input into the linear
conversion unit M802 after the non-linear conversion unit
S801 within the F function as in FIG. 18 previously described,
is stored.

In contrast to the 160 bits worth of registers used according
to the implementation method from Hamalainen, et al. as
introduced in the previously described section (2-4-2. Prob-
lem with Application of Miniaturization Implementation
Configuration for SPN Structures to Expanded Feistel Struc-
tures), the circuit regarding the configuration illustrated in
FIG. 19 is achieved by a total of only 128 bits worth of
registers using 16 8-bit registers RO through R15.

The round function expressed in FIG. 13 and FIG. 18 is
executed using this data path illustrated in FIG. 19.

If FIG. 13 is referenced, it is understood that two F func-
tions are necessary to calculate one round. According to FI1G.
19, the output of one F function is executed over four cycles,
and after another four cycles, the input for the F function is
restored from the intermediate value 1, 804 to be stored as in
FIG. 18.

As previously described, it is necessary to execute two F
functions in one round, and so one round worth of calcula-
tions are executed by requiring a total of 16 cycles. Also,
when inputting plaintext, this is considered to be input over 16
cycles every eight bits starting from the top eight bits, and
when outputting ciphertext, this is also considered to be
sequentially output over 16 cycles every eight bits from the
output port starting from the top eight bits.

Hereatfter, the flow of data during the 16 cycles when input-
ting plaintext, the 16 cycles necessary for the calculation of
one round, and the 16 cycles when outputting ciphertext will

be described with reference to Table 1 illustrated below.
TABLE 1
Data Stored in Registers
cycle
0 1 2 3 4
R S(xo) S(xy) S(x,) S(x3) S(xo)
R, S(xy) S(x,) S(x3) S(xo) S(xy)
R, S(x) S(x3) S(xo) S(xy) S(x)
Rs S(x3) S(xo) S(x1) S(x,) S(x3)

20

25

35

40

45

50

60

65

16

TABLE 1-continued

Data Stored in Registers

Ry X4 Xs X6 X7 Xg
Rs Xs Xs X7 Xg X9
Re Xg X7 Xg X X10
Ry X7 Xg X9 X10 X1
Rg Xg X9 X10 X1 X2
Ry X X10 X1 X2 X3
Rio X10 X1 X2 X13 X14
Ry X1 X2 X13 X14 Xis
Rp» X2 X13 X1a Xis %41 (=yo)
Ris X13 X14 X5 x, By x5 Of; (=v)
5P X1a Xis x,Dfp x5P1, %P1 (=y2)
Ris X1s x,Dfo x5Df XD %7013 (=y3)
cycle
4 5 6 7 8
Ro S(xo) S(xy) S(xy) S(x3) S(xg)
R, S(xy) S(x,) S(x3) S(xg) S(xo)
Ry S(x) S(x3) S(xg) S(xo) S(x10)
Rs S(x3) S(xg) S(xo) S(x10) S(x;1)
R, Xg X9 X10 X1 X12
Rs X9 X10 X1 X2 X13
Re X10 X1 X2 X13 X14
Ry X1 X2 X13 X14 Xis
Rg X2 X13 X14 X1s Yo
Ro X13 X14 X1s Yo Y1
Rio X1a Xis Yo Y1 Y2
Ry X1s Yo Y1 Y2 Y3
Rp» Yo Y1 Y2 Y3 Xo (=Y12)
Ris Y1 Y2 Y3 Xo X (=V13)
5P Y2 Y3 Xo X1 X3 (=Y14)
Rys Y3 Xo Xy X2 X3 (=Y }5)
cycle
8 9 10 11 12
Ro S(xg) S(xo) S(x10) S(x11) S(xg)
R, S(xo) S(x10) S(x;1) S(xg) S(xo)
R, S(x10) S(xyy) S(xg) S(xo) S(xy0)
Rs S(x11) S(xg) S(xo) S(x10) S(x;1)
Ry X2 X13 X1a Xis Yo
Rs X13 X14 X1s Yo Y1
Re X4 X5 Yo Y1 Y2
Ry X1s Yo Y1 Y2 Y3
Rg Yo Y1 Y2 Y3 Yi2
Ro Y1 Y2 Y3 Yi2 Y13
Ryo Y2 Y3 Yi2 Y13 Yia
Ry Y3 Yi2 Y13 Yia Yis
Rp» Yi2 Y13 Yia Yis xoDfs (=ys)
Ris Y13 Yia Yis xpDfg %1306 (=y0)
Ry, Yia Yis x2fg x5l %Dl (=y10)
Ris Yis xoDfg x13Dhy x14Plo D1y (=y10)
cycle
12 13 14 15 16
Ro S(xg) S(xo) S(xy0) S(xyy) S(yo)
R, S(xo) S(x10) S(x;1) S(vo) S(vy)
Ry S(x10) S(x11) S(vo) S(v1) S(v2)
Rs S(x11) S(vo) Svy) S(v2) S(vs)
R, Yo Y1 Y2 Y3 Xg (=Va)
Rs Y1 Y2 Y3 Xg Xo (=Vs)
Re Y2 Y3 Xg X9 X10(=Ye)
Ry Y3 Xg X9 X10 x5 (=y7)
Rg Yi2 Y13 Yia Yis Ys
Ro Y13 Yia Yis Ys Yo
Rio Yia Yis Ys Yo Yio
Ry Yis Ys Yo Yio Y11
Ry, Ys Yo Yio Y11 Yi2
Ris Yo Yio Yu Yi2 Y13
5P Y10 Y11 Yi2 Y13 Yia
Ris Yu Yi2 Y13 Yia Yis

First, the effect of the 16 cycles when inputting plaintext

will be described.

US 9,418,245 B2

17

Regarding i€{0, 1, . . ., 15},

pi is designated as an 8-bit element.

At this time, the plaintext is conceived as the 128 bits
represented by (p0, pl,...,pl5).

At the first cycle when inputting plaintext, pO is stored in
the R15 from a plaintext input port illustrated in FIG. 19 using
amultiplexor m01. Overthe 11 cycles afterwards, p0 is stored
sequentially in R14, R13, . . ., and R4 using a multiplexor
m02.

As previously described, after 12 cycles when inputting
plaintext, the pO is stored in R4. At the 13th cycle, the p0
stored in the R4 is input into a non-linear calculation unit
8901, and this output is stored in R3 using a multiplexor m03.

The output when the p0 is input into the non-linear calcu-
lation unit S901 is designated as S(p0). Afterwards, the S(p0)
is stored sequentially in R2, R1, and RO over three cycles.

Values other than pO such as pi, ie(1, 2, . . ., 15) are delayed
by ani cycle are stored in the register storing p0. However, the
value stored in R4 is input into the non-linear calculation unit
S901 at the next cycle, and the S(pi), which is the output of
this, is input into R3.

Lastly, after the 16 cycles when inputting plaintext, the
multiplexors m01, m02, and m03 are used to store (S(p0),
S(p1), S(p2), and S(p3)) in RO through R3, and (p4, p5, . . .,
and p15) in R4 through R15.

Further, the (S(p0), S(pl), S(p2), and S(p3)) input into RO
through R3 match the intermediate value 1804 to be stored for
the F function described in FIG. 18 regarding the first round.

Next, the flow of data over 16 cycles necessary for the
calculation of one round will be described.

FIG. 20 illustrates the round function for rounds ie{1, . . .,
r}in FIG. 13.

Now, the input values for the round function for rounds
ie{l, . . ., r} regarding FIG. 20 are designated as (x0,
x1,...,x15), and the output values of the round function for
the i round is designated as (y0, y1, ..., y15). However, when
i=1, (x0,x1, .. .,x15) represents plaintext, and when i=r, (y0,
yl,...yl5) represents ciphertext.

Asthe initial state when starting a round regarding FI1G. 19,
it is conceived that (S(x0), S(x1), S(x2), and S(x3)) are stored
in RO through R3, and (x4, x5, . . ., and x15) are stored in R4
through R15.

Further, when i=1, as the initial state when starting a round,
as previously described, the state in which the (S(p0), S(p1),
S(p2), and S(p3)) are stored in RO through R3, and the (p4,
pS, . .., pl5) are stored in R4 through R15 represents the
initial state when starting a round.

According to Table 1, FIG. 19 illustrates the content stored
in the registers during the calculation of the round function
regarding the technique according to the present invention.
This represents the content stored in each register RO,
R1, ..., R15 after each cycle in order to execute one round
over 16 cycles. Also, as described regarding FIG. 19, the
output when (x0, x1, x2, and x3) and (x8, x9, x10, and x11)
are input into the F function is designated to be represented as
(f0, {1, £2, and f3) and (f8, 19, 10, and f11).

At cycles one through four when executing the round func-
tion, the linear conversion unit M801 as described regarding
FIG. 18 is executed using a matrix calculation unit M902 as
described regarding FIG. 19. Regarding the matrix calcula-
tion unit M902, multiplication of 0x02 and 0x03 from a finite
GF (2%) with the values stored in RO and R1 is executed by a
mul02 and mul03 described regarding FIG. 19. An XOR is
performed on the value from this multiplication, and an XOR
is performed also with the values stored in R2 and R3, which
is that that is output.

10

30

40

45

18

By doing so in this way, the top 8 bits of the output value
from the linear conversion unit M801 described regarding
FIG. 18 can be calculated during the first round.

Also, bits 9 through 16, 17 through 24, and 25 through 32
of the output value for the linear conversion unit M801
described regarding FIG. 18 can be calculated similarly dur-
ing the second, third, and fourth cycles by storing the values
stored in RO in R3 at the next cycle by using the multiplexor
m03.

This is the matrix conceived, which takes advantage of the
point that this is a cyclic matrix which rotates the elements for
each line to the right for each line. By conducting an 8-bit
rotation of the content stored in (RO, R1, R2, and R3) to the
left every cycle, the calculation of each every cycle is imple-
mented using the matrix calculation unit M902 described
regarding FIG. 19, which implements the calculation of one
matrix line.

Further, at rounds one through four when executing the
round function, an XOR calculation is sequentially executed
every eight bits from the top eight bits with the round key
against the output from the previously described linear cal-
culation unit by an XOR calculation unit X903.

Also, an XOR calculation X191 with the output of an F
function F192 described regarding FIG. 20 is achieved by
using an XOR calculation unit X904 on the output value from
the XOR calculation unit X903 with the round key as in FIG.
19 and the values stored in the register R4.

x4, %5, x6, and X7 are sequentially stored in R4 over cycles
one through four, and so by stored the output from the XOR
calculation unit X904 in the register R15 using the multi-
plexor m01, this enables a state in which the values from
performing an XOR on the 32-bit output after four cycles
when (x0,x1,x2, and x3) was input into the F function and the
32 bits of (x4, x5,x6, and x7) are stored in R12, R13,R14, and
R15 every eight bits.

Per the description of Table 1, after four cycles from the
start of the round function, the values from the XOR per-
formed on the 32-bit output from when (x0, x1, x2, and x3)
were input into the F function and the 32 bits of (x4, x5, x6,
and x7) are stored in R12, R13, R14, and R15.

These values are y0, y1, y2, and y3, which are the top 32
bits of the output values from the round function.

Also, the value stored in RO is stored in R3 at the next cycle
using the multiplexor m03 described regarding FIG. 19, and
s0 it can be understood from referring to Table 1 that after four
cycles from the start of the round function that the content
stored in RO, R1, R2, and R3 have not changed from the
values at the start of the round function.

Also, the other x8, x9, . . ., and x15 are stored in R4,
RS, ..., and R11 after four cycles from the start of the round
function using the multiplexor m02 described regarding FIG.
19.

Next, the flow of data during cycles five through eight for
the execution of the round function will be described. As
previously described, it is understood that the calculation
using the output from when (x0, x1, x2 and x3) were input
into the F function is executable.

However, the values (x0, x1, x2, and x3) necessary as the
values for the round function output after four cycles from the
start of the round function are not stored, and instead only the
(S(x0), S(x1), S(x2), and S(x3)), which are the intermediate
values during the calculation of the F function are stored in
RO, R1, R2, and R3.

At cycles five through eight, the (x0, x1, x2, and x3) are
restored from the intermediate values during the calculation
of'the F function, which is one point of the present invention,
using a circuit for restoring the input for the F function. After

US 9,418,245 B2

19
four cycles from the start of the round function, the values of
(8(x0), S(x1), S(x2), and S(x3)) are stored in RO, R1, R2, and
R3 as the intermediate values during the calculation of the F
function.

A non-linear calculation unit S~ function S905 described
regarding FIG. 19 represents an inverse function of the non-
linear calculation unit S-box S901. The values stored in RO
during cycles five through eight from the start of the round
function are input into the non-linear calculation unit S~*, and
this output is stored in R15 using the multiplexor m01.

By doing so in this way, after eight cycles from the start of
the round function, this enables a state in which x0, x1, x2,
and x3 are stored in R12, R13, R14, and R15. The inverse
function S~! of the nonlinear calculation S-box is imple-
mented when configuring a decoding function according to
an encryption algorithm using an SPN structure different
from that of an expanded Feistel structure, but normally it is
not necessary to use this for either encryption or decryption
regarding expanded Feistel structures, and so this becomes a
circuit for the purpose of restoring the input for the F function
from the intermediate values during the calculation of the F
function.

Further, at cycles five through eight during the execution of
the round function, in order to calculate the output from an F
function calculation unit F193 described regarding FIG. 20,
the (x8, x9, x10, and x11) stored in R4, RS, R6, and R7 are
input into the non-linear calculation unit S901 described
regarding FI1G. 19, and this output is stored in RO, R1, R2, and
R3 using the multiplexor m03.

Per the description of Table 1, after eight cycles from the
start of the round function, the values (x0, x1, x2, and x3) are
stored in R12, R13, R14, and R15. These values become y12,
y13,y14, and y15, which are the bottom 32 bits of the output
values from the round function.

Also, the x8,x9,x10, and x11 stored in R4, R5, R6, and R7
after four cycles from the start of the round function are stored
in RO, R1, R2, and R3 after eight cycles from the start of the
round function and being input into the non-linear calculation
unit S901 using the multiplexor m03.

Also, the other x12, x13, x14, x15, y0, y1, y2, and y3 are
storedinR4, RS, ..., and R11 after eight cycles from the start
of the round function using the multiplexor m02 described
regarding FIG. 19.

Next, the flow of data for cycles nine through twelve during
the calculation of the round function will be described. First,
the linear conversion unit M801 described regarding FIG. 18
within the F function calculation unit F193 described regard-
ing FIG. 20 is executed using the matrix calculation unit
M902 described regarding FIG. 19.

Regarding the matrix calculation unit M902, multiplica-
tion of 0x02 and 0x03 from a finite GF (2%) with the values
stored in RO and R1 is executed by a mul02 and mul03
described regarding FIG. 19. An XOR is performed on the
value from this multiplication, and an XOR is performed also
with the values stored in R2 and R3, the result of which is
output.

By doing so in this way, at the ninth cycle from the start of
the round function, the top 8 bits of the output value from the
linear conversion unit M801 described regarding FIG. 18 can
be calculated. Also, bits 9 through 16, 17 through 24, and 25
through 32 of the output value for the linear conversion unit
M801 described regarding FIG. 18 can be calculated simi-
larly during the second, third, and fourth cycles by storing the
values stored in RO in R3 at the next cycle by using the
multiplexor m03.

Further, at cycles nine through twelve from the start of the
round function, an XOR calculation with the round key is

10

15

20

25

30

35

40

45

50

55

60

65

20

sequentially executed every eight bits from the top eight bits
against the output from the previously described linear cal-
culation unit by the XOR calculation unit X903. Also, the
XOR calculation X191 with the output of an F function F193
described regarding FIG. 20 is achieved by using the XOR
calculation unit X904 on the output value from the XOR
calculation unit X903 with the round key as in FIG. 19 and the
values stored in the register R4.

As x12, x13, x14, and x15 are sequentially stored in R4
during cycles nine through twelve, a state is enabled in which
the values from the XOR performed on the 32-bit output from
when (x8, x9, x10, and x11) were input into the F function
after four cycles and the 32 bits of (x12,x13,x14, and x15) are
stored in R12,R13, R14, and R15, by storing the output from
the XOR calculation unit X904 in the register R15 using the
multiplexor m01.

Per the description of Table 1, after four cycles from the
start of the round function, the values from the XOR per-
formed on the 32-bit output from when (x8, x9, x10, and x11)
were input into the F function and the 32 bits of (x12, x13,
x14, and x15) are stored in R12, R13, R14, and R15.

These values are y8, y9, y10, and y11, which are bits 65
through bits 96 of the output value from the round function.
Also, the value stored in RO is stored in R3 at the next cycle
using the multiplexor m03 described regarding FIG. 19, and
so0 it can be understood from referring to Table 1 that the
content stored in RO, R1, R2, and R3 after eight cycles and
twelve cycles have not changed.

Also, the other y0, y1, y2, y3, y12, y13, y14, and y15 are
stored in R4, RS, .. ., and R11 after 12 cycles from the start
of the round function using the multiplexor m02 described
regarding FIG. 19.

Next, the flow of data for cycles 13 through 16 during the
execution of the round function will be described. As previ-
ously described, it is understood that the calculation using the
output from when (x8, x9, x10, and x11) were input into the
F function is executable.

However, the values (x8,x9,x10, and x11) necessary as the
values for the round function output after four cycles from the
start of the round function are not stored, and instead only the
(S(x8), S(x9), S(x10), and S(x11)), which are the intermedi-
ate values during the calculation of the F function are stored
in RO, R1, R2, and R3.

At cycles 13 through 16, the (x8, x9, x10, and x11) are
restored from the intermediate values during the calculation
of'the F function, which is one point of the present invention,
using a circuit for restoring the input for the F function. After
12 cycles from the start of the round function, the values of
(S(x8), S(x9), S(x10), and S(x11)) are stored in RO, R1, R2,
and R3 as the intermediate values during the calculation of the
F function.

The non-linear calculation unit S~ function S905
described regarding FIG. 19 represents an inverse function of
the non-linear calculation unit S-box S901. The values stored
in RO during cycles 13 through 16 from the start of the round
function are input into the non-linear calculation unit S™*, and
this output is stored in R7 using the multiplexor m02.

By doing so in this way, after 16 cycles from the start of the
round function, this enables a state in which x8, x9, x10, and
x11 are stored in R4, RS, R6, and R7. Further, at cycles 13
through 16 during the execution of the round function, in
order to calculate the next F function, the (y0, y1,y2, and y3)
stored in R4, R5, R6, and R7 are input into the non-linear
calculation unit S901 described regarding FIG. 19, and this
output is stored in RO, R1, R2, and R3 using the multiplexor
m03.

US 9,418,245 B2

21

Per the description of Table 1, after 16 cycles from the start
of the round function, the values (x8, x9, x10, and x11) are
storedin R4, RS, R6, and R7. These values become y4, y5, y6,
and y7, which are the bits 33 through bits 64 of the output
values from the round function.

Also, the y0, y1, y2, and y3 stored in R4, R5, R6, and R7
after 12 cycles from the start of the round function are stored
in RO, R1, R2, and R3 after 16 cycles from the start of the
round function and being input into the non-linear calculation
unit S901 using the multiplexor m03.

Also, the other y8, y9, y10, and y11 are stored in RS, R9,
R10, and R11, respectively, after 16 cycles from the start of
the round function.

Also, the y12, y13, y14, and y15 are stored in R12, R13,
R14, and R15, respectively, after 16 cycles from the start of
the round function using the multiplexor m01 described
regarding FIG. 19.

Lastly, the flow of data for the 16 cycles during the output
of ciphertext will be described.

Regarding i€(0, 1, ..., 15),

ci designates 8-bit elements.

At this time, the ciphertext is conceived as the 128 bits
represented by (c0, c1, c15).

InRO,R1,...,R15 described regarding FIG. 19 at the time
the round function of r rounds described regarding FIG. 13
finishes,

S(c4), S(c5), S(c6), S(c7),c8, ¢9,c10, cl1, c12,cl3, cl4,
cl5, c0, cl, ¢2, and ¢3 are stored.

Over the 16 cycles during the output of ciphertext, the
values stored in RO are input into the non-linear calculation
unit S~ function S905 every cycle, and this outputis stored in
R15 using the multiplexor m01.

Also, the values stored in R8 are stored in R7 every cycle
using the multiplexor m02. Also, the values stored in R4 are
input into the non-linear calculation unit S-box S901 every
cycle, and this output is stored in R3 using the multiplexor
mO03. Also, the value in R12 is output from the ciphertext
output port as in FIG. 19 every cycle during the output of
ciphertext.

By doing so in this way, the CO, cl, . . ., and c15 are
sequentially output in order every cycle from the ciphertext
output port.

As previously described, the non-linear calculation unit
S! function S905 regarding the configuration illustrated in
FIG. 19 represents an inverse function of the non-linear cal-
culation unit S-box S901. The non-linear calculation unit S~
function S905 executes a calculation to restore the input for
the F function from the intermediate values (intermediate
value 1804 illustrated in FIG. 18) during the calculation of the
F function stored in the registers RO through R3. The input
values corresponding to the round function at the next repeti-
tion are executable by this inverse calculation configuration,
and so the advantage of reducing registers similar to that
previously described can be expected.

4. Summary of the Advantages of the Technique
According to the Present Disclosure

According to the technique of the related art, the output of
the F function has been calculated while the input for the F
function continues to be stored. Under the basis of this con-
ception, in addition to the block length worth of registers,
registers for storing the intermediate values during the calcu-
lation of the F function are necessary.

In contrast, according to the technique related to the
present disclosure previously described, a configuration is
implemented in which the input for the F function is deleted

10

20

25

30

35

40

45

50

55

60

65

22

once, and a circuit is implemented for restoring the original
input from the intermediate values during the calculation of
the F function, after the calculation of the output of the F
function.

By doing so in this way, the necessary registers are just the
block length worth of registers, and so it is possible to remove
the circuit of registers for storing the intermediate values
during the calculation of'the F function, which was necessary
regarding the technique according to the related art. Accord-
ing the application example of the technique according to the
present invention in the previous section, the intermediate
value 1804 to be stored, which are the values input into the
linear conversion unit M802 after the non-linear conversion
unit S801 described regarding FIG. 18, is designated as the
necessary intermediate values during the calculation of the F
function, and thus the output of the F function is executable.

Also, the input for the F function is restored from the
intermediate values during the calculation of the F function as
previously described by implementing an inverse processing
circuit regarding the S-box, which is notused according to the
technique of the related art. By doing so in this way, the
reduction in registers is achieved as a result. The circuit scale
of the registers is relatively large as compared to other cells,
and so the reduction of registers had a significant impact on
miniaturization.

5. Other Embodiments

According to the previous section, the configuration ele-
ments internal to the round function regarding the 4-line
expanded Feistel structure were hypothesized to some
degree, and the application method and advantages have been
described. The technique according to the present disclosure
is not only a structure of the specific round function as
described by the previous sections, and so modifications and
extended structures are also applicable.

Also, the technique according to the present disclosure is
not only applicable to 4-line expanded Feistel structures, and
s0 a similar type of conception can be applied to 2-line Feistel
structures and x-line expanded structures in which x is any
value (X is a natural number of two or more).

5-1. Expanded Example 1

The method according to the present disclosure is not only
applicable to the SP type F of function as described regarding
FIG. 18, and so is also applicable to SPS type of F functions
as described regarding FIG. 21. FIG. 22 illustrates an example
data path that can be conceived in this case.

As an example of a matrix, the elements in the first line (2,
3,1, 1) in FIG. 22 are assumed to be a cyclic matrix. Also,
output from a first non-linear calculation unit S101 is input
into a linear calculation unit M102 as an example of the
intermediate values to be stored, which is a point in the case
of applying the technique of the present disclosure to
expanded Feistel structures having the F function as
described regarding FIG. 21.

FIG. 21 illustrates an intermediate value 1104 to be stored.

This case is similar to the flow of data regarding FIG. 19,
which is the configuration example of hardware implemen-
tation of an expanded Feistel structure having the F function
described regarding FIG. 18, and a detailed description will
be omitted.

To briefly describe the differences with the data path
described regarding FIG. 19, the data path described regard-
ing FIG. 22 is different in that the multiplexor m01 is imple-
mented before the input to a non-linear calculation unit S-box

US 9,418,245 B2

23

S111, the output from a matrix calculation unit M112 is input
into the non-linear calculation unit S-box S111 using the
multiplexor m01, and the output from the S-box S111 is
directly input into an XOR unit X114 with the round key.

This is due to the point that an SPS type of F function
described regarding FIG. 21 is assumed instead of the SP type
of F function described regarding FIG. 18. This is because
regarding the SPS type of F function described regarding F1G.
21, the output from the linear calculation unit M102 is input
into a second non-linear conversion unit S103, and the output
from the second non-linear conversion unit S103 is input into
an XOR unit X105 with the round key.

A non-linear calculation unit S™* function S113 regarding
the configuration illustrated in FIG. 22 represents an inverse
function of the non-linear calculation unit S-box S111. The
non-linear calculation unit S~ function 8113 executes a cal-
culation to restore the input for the F function from the inter-
mediate values (intermediate value 1104 illustrated in FIG.
21) during the calculation of the F function stored in the
registers RO through R3. The input values corresponding to
the round function at the next repetition are executable by this
inverse calculation configuration, and so the advantage of
reducing registers similar to that previously described can be
expected.

5-2. Expanded Example 2

The method according to the present disclosure is not only
applicable to the SP type of F function as described regarding
FIG. 18, and so is also applicable to SPS type of F functions
to which multiple key insertions are input as described
regarding FIG. 23. FIG. 24 illustrates an example data path
that can be conceived in this case.

As an example of a matrix, the elements in the first line (2,
3,1, 1) in FIG. 24 are assumed to be a cyclic matrix. Also,
output from a first non-linear calculation unit S121 is input
into a linear calculation unit M122 as an example of the
intermediate values to be stored, which is a point in the case
of applying the technique of the present disclosure to
expanded Feistel structures having the F function as
described regarding FIG. 23.

FIG. 23 illustrates an intermediate value 1124 to be stored.

This case is similar to the flow of data regarding FIG. 19,
which is the example configuration of a hardware implemen-
tation of an expanded Feistel structure having the F function
described regarding FIG. 18, and a detailed description will
be omitted.

To briefly describe the differences with the data path
described regarding FIG. 19, the data path described regard-
ing FIG. 24 is different in that the multiplexor m01 is imple-
mented before the input to a non-linear calculation unit S-box
S131, the output from a matrix calculation unit M132 is input
into an XOR calculation unit X134, and this output is input
into the non-linear calculation unit S-box S131 using the
multiplexor m01, and the output from the S-box S131 is
directly input into an XOR unit X135 with the round key.

This is due to the point that an SPS type of F function
performing multiple key insertions as described regarding
FIG. 23 is assumed instead of the SP type of F function
described regarding FIG. 18. This is because regarding the
SPS type of F function performing multiple key insertions as
described regarding FIG. 23, the output from the linear cal-
culation unit M122 is input into a first XOR calculation unit
X125 with the round key, the output from the first XOR
calculation unit X125 with the round key is input into a
second non-linear conversion unit S123, and the output from

10

15

20

25

30

35

40

45

50

55

60

65

24

the second non-linear conversion unit S123 is input into a
second XOR unit X126 with the round key.

A non-linear calculation unit S~ function S133 regarding
the configuration illustrated in FIG. 24 represents an inverse
function of a non-linear calculation unit S-box S131. The
non-linear calculation unit S~ function 8133 executes a cal-
culation to restore the input for the F function from the inter-
mediate values (intermediate value 1124 illustrated in FIG.
23) during the calculation of the F function stored in the
registers RO through R3. The input values corresponding to
the round function at the next repetition are executable by this
inverse calculation configuration, and so the advantage of
reducing registers similar to that previously described can be
expected.

5-3. Expanded Example 3

The method according to the present disclosure is not only
applicable to the SP type of F function as described regarding
FIG. 18, and so is also applicable to SP type of F functions in
which key insertions are directly after the F function input as
described regarding FIG. 25. FIG. 26 illustrates an example
data path that can be conceived in this case.

Output from a non-linear calculation unit S141 is input into
a linear calculation unit M142 as an example of the interme-
diate values to be stored, which is a point in the case of
applying the technique of the present disclosure to expanded
Feistel structures having the F function as described regard-
ing FIG. 25.

FIG. 25 illustrates an intermediate value 1144 to be stored.

Different from the F functionillustrated in FIG. 18, in order
to restore the input for the F function from the intermediate
value 1144 to be stored described regarding FIG. 25, which
are the intermediate values during the calculation of the F
function, not only an S~*, but also a circuit for performing an
XOR with the same round key as when the XOR was per-
formed directly, immediately after the input for the F func-
tions is necessary. This is because not only the inverse calcu-
lation of the non-linear calculation unit S141, an inverse
calculation by an XOR calculation unit X143 with the round
key regarding the values inversely calculated thus is neces-
sary to restore the input for the F function from the interme-
diate value to be stored described regarding FIG. 25, which is
different from the F function illustrated in FIG. 18.

In this case as well, it is conceivable to estimate by consid-
ering the flow of data regarding FIG. 19, which is the example
configuration of a hardware implementation of an expanded
Feistel structure having the F function described regarding
FIG. 18, and so a detailed description will be omitted. Regard-
ing the data path described regarding FIG. 26, an XOR cal-
culation unit X154 is implemented before the input for a
non-linear calculation unit S-box S151.

In contrast, the output from a matrix calculating unit M152
is directly input into an XOR calculation unit X156 with the
value stored in R4 instead of executing the XOR calculation
with the round key. Also, the value stored in RO is input into
an XOR calculation unit X155 after being input into the
non-linear calculation S~ function, which is also a difference
between that regarding FIG. 19. As previously described, this
is because not only the inverse calculation of the non-linear
calculation unit S141, it is necessary to perform an inverse
calculation by the XOR calculation unit X143 with the round
key against the values inversely calculated thus in order to
restore the input for the F function from the intermediate
value 1144 to be stored as described regarding FIG. 25.

A non-linear calculation unit S~ function S153 regarding
the configuration illustrated in FIG. 26 represents an inverse

US 9,418,245 B2

25

function of the non-linear calculation unit S-box S151. The
non-linear calculation unit S~! function S153 executes a cal-
culation to restore the input for the F function from the inter-
mediate values (intermediate value 1144 illustrated in FIG.
25) during the calculation of the F function stored in the
registers RO through R3. The input values corresponding to
the round function at the next repetition are executable by this
inverse calculation configuration, and so the advantage of
reducing registers similar to that previously described can be
expected.

5-4. Expanded Example 4

The method according to the present disclosure is not only
applicable to the SP type of F function as described regarding
FIG. 18, and so is also applicable to the F functions described
regarding FIG. 27. The F function described regarding FIG.
27 has a significantly different structure from the F functions
described until this point, and accordingly will be described
in detail.

The F function described regarding FIG. 27 calculates the
input for the F function by a first non-linear calculation unit
S161, and the output from this first non-linear calculation unit
S161 is input into a second non-linear calculation unit S162.
Afterwards, this structure repeats to form a configuration in
which the same calculation as that by the first and second
non-linear calculation units is conducted for an s—1 number of
times, the output from an s non-linear calculation unit S16s,
which performs the calculation finally similar to that by the
first and second non-linear calculation units, is input into the
XOR calculation unit X105 with the round key, and this
output is designated as the output from the F function.

Regarding this kind of F function, registers for storing the
value of the intermediate value 1164 to be stored described
regarding FIG. 27, which are the intermediate values during
the calculation of the F function each cycle, are necessary
when considering a hardware circuit executing serial process-
ing.

The advantages of the technique according to the invention
can also be obtained regarding an encryption algorithm hav-
ing an expanded Feistel structure storing the F function
described regarding FIG. 27. Similar to that introduced by
FIG. 18 and FIG. 19, it is possible to restore the input for the
F function from the intermediate value 1164 to be stored
described regarding F1G. 27, and so by implementing a circuit
for this purpose, a circuit with just the block length worth of
registers can be achieved.

Within the F function is a repeating structure, and FIG. 28
illustrates an example data path as conceived when s=4. The
internal repeating structure of the F function described
regarding FIG. 27 is similar to the 4-line expanded Feistel
structure, and so from this nature of Feistel structures, the
non-linear circuit S~* function is not used, thus it is possible
to restore the input for the F function from the intermediate
value 1164 to be stored described regarding FIG. 27 by using
only non-linear calculation units S172 and S173, which are
S-box circuits.

Regarding the configuration illustrated in FIG. 28, the non-
linear calculation units S172 and S173 execute the calculation
to restore the input for the F function from the intermediate
values (intermediate value 1164 illustrated in FIG. 27) during
the calculation of the F function stored in the registers RO
through R3. The input values corresponding to the round
function at the next repetition are executable by this calcula-
tion configuration, and so the advantage of reducing registers
similar to that previously described can be expected.

10

15

20

25

30

35

40

45

50

55

60

65

26

Also, two S-box circuits are used in the data path described
regarding FIG. 28, but it is easy to estimate that it is possible
to describe the data path by using only one. Also, though it
would be necessary to slightly modify the data path, a data
path with an optional number of repetitions is configurable.
Also, a control signal E174 represented by a symbol “en”
appearing in FIG. 28 represents an enable signal controlled to
become high at the necessary timing, which is controlled by a
control unit not illustrated in FIG. 28.

5-5. Expanded Example 5

The method according to the present disclosure is not only
applicable to the SP type of F function as described regarding
FIG. 18, and so is also applicable to the F functions described
regarding FIG. 29. FIG. 29 can be considered as that which
has changed the non-linear calculation units S161, S162 and
S16s in the repeating type of F function described regarding
FIG. 27 to non-linear calculation units S181, S182, and S18s
described regarding F1G. 29.

Regarding this kind of F function, registers for storing the
value of an intermediate value 1184 to be stored described
regarding FIG. 29, which are the intermediate values during
the calculation of the F function each cycle, are necessary
when considering a hardware circuit executing serial process-
ing.

The advantages of the technique according to the invention
can also be obtained regarding an encryption algorithm hav-
ing an expanded Feistel structure storing the F function
described regarding FIG. 29. Similar to that described with
reference to FIG. 18 and FIG. 19, it is possible to restore the
input for the F function from the intermediate value [184 to be
stored described regarding FI1G. 29, and so by implementing
a circuit for this purpose, a circuit with just the block length
worth of registers can be achieved.

Itis possible to restore the input for the F function from the
intermediate value 1184 to be stored described regarding FIG.
29 by implementing an S~ which is a circuit for processing
an inverse calculation of the S-box, into the structure of the F
function. Also, within the F function is a repeating structure,
but the technique according to the present invention is appli-
cable to an arbitrary number of repetitions.

5-6. Expanded Example 6

The specific F function configurations described here are
limited, but the technique according to the present disclosure
is applicable to optional F functions in which it is possible to
restore the input for the F function from the intermediate
values by implementing an applicable circuit.

5-7. Expanded Example 7

When including a matrix calculation in the F function, the
technique according to the present disclosure is not only
applicable to cyclic matrixes but also to Hadamard matrices,
and a similar advantage can be expected. Also, the idea of the
technique according to the present invention can be applied to
matrices other than those previously described.

5-8. Expanded Example 8
When including a matrix calculation in the F function,

regarding the method according to the present disclosure, a
similar conception is applicable to not only 4x4 matrix but

US 9,418,245 B2

27

also xxx matrices in which x is an arbitrary value (x is a
natural number of two or more), and a similar advantage can
be expected.

5-9. Expanded Example 9

The application examples of the technique according to the
present disclosure described examples with 4-line, type-2
expanded Feistel structures, but this is also applicable to
type-1 and type-3 expanded Feistel structures, and a similar
advantage can be expected.

5-10. Expanded Example 10

The application examples of the technique according to the
present disclosure described examples with 4-line, type-2
expanded Feistel structures, but this is also applicable to
2-line Feistel structures, and a similar advantage can be
expected.

5-11. Expanded Example 11

With a conception similar to that applied to the 4-line
expanded Feistel structures, this is also applicable to x-line
expanded Feistel structures in which x is an arbitrary value (x
is a natural number of three or more), and a similar advantage
can be expected.

5-12. Expanded Example 12

As illustrated by the dotted frames in FIG. 20, a shuffling
processing such as shift processing in data units of each line
is performed on the output from one round function when
outputting this to the round function for the next repetition.

The shuffling of data between these round functions, that is
to say, when the output from the previous round is output to
the next round, the processing to shuffle the data by units of
each line is called a round permutation.

For example, the round permutation in the 4-line expanded
Feistel structure illustrated in FIG. 20 has the following con-
figuration.

The output from the first line from the left is set to the input
for the fourth line from the left in the next round function,

the output from the second line from the left is set to the
input for the first line from the left in the next round function,

the output from the third line from the left is set to the input
for the second line from the left in the next round function,

the output from the fourth line from the left is set to the
input for the third line from the left in the next round function,

and so this is a setting example of the previously described
round permutation.

For example, the data path described with reference to FI1G.
19 is an example data path configuration corresponding to the
previously described round permutation setting.

The method according to the present disclosure is not lim-
ited to the round permutation setting illustrated in FIG. 20,
and so an arbitrary round permutation is applicable.

That is to say, by setting an configuration to inversely
calculate from intermediate data within the F function execu-
tion unit, the advantage to reduce registers similar to that
previously described can also be expected regarding configu-
rations having an arbitrary round permutation.

However, it is necessary to set the data path as a configu-
ration depending on the setting of each round permutation.

FIG. 30 illustrates one configuration example of a round
permutation which is different from the round permutation
configuration illustrated in FIG. 20.

10

15

20

25

30

35

40

45

50

55

60

65

28

The round permutation illustrated in FIG. 30 divides the
(n/4)-bit output of each line from the previous round function
into two parts, and divides the line output into two parts of
(1/8) bits.

This configuration performs data shuffling (replacement)
at units of each line when inputting data totaling eight lines
including each of the (1/8) bits of data into the next round
function.

The setting of the round permutation for the 4-line
expanded Feistel structure illustrated in FIG. 30 is as follows.

The first half of the (n/8)-bit data from the output of the first
line from the left divided into two parts is set as the input for
the first half of the (n/8)-bit data for the fourth line from the
left in the next round function,

the second half of the (n/8)-bit data from the output of the
first line from the left divided into two parts is set as the input
for the second half of the (n/8)-bit data for the second line
from the left in the next round function,

the first half of the (1/8)-bit data from the output of the
second line from the left divided into two parts is set as the
input for the first half of the (n/8)-bit data for the first line from
the left in the next round function,

the second half of the (n/8)-bit data from the output of the
second line from the left divided into two parts is set as the
input for the second half of the (n/8)-bit data for the third line
from the left in the next round function,

the firsthalf of the (1/8)-bit data from the output of the third
line from the left divided into two parts is set as the input for
the first half of the (n/8)-bit data for the second line from the
left in the next round function,

the second half of the (n/8)-bit data from the output of the
third line from the left divided into two parts is set as the input
for the second half ofthe (1/8)-bit data for the fourth line from
the left in the next round function,

the first half of the (1/8)-bit data from the output of the
fourth line from the left divided into two parts is set as the
input for the first half of the (1/8)-bit data for the third line
from the left in the next round function,

the second half of the (n/8)-bit data from the output of the
fourth line from the left divided into two parts is set as the
input for the second half of the (n/8)-bit data for the first line
from the left in the next round function,

and so this is the setting example of the previously
described round permutation.

Further, the F function in the round function illustrated in
FIG. 30 is assumed to be an SPS type of F function as
described regarding FIG. 21.

FIG. 31 illustrates an example data path of the round func-
tion unit regarding the configuration performing the execu-
tion of the round permutation illustrated in FIG. 30.

The data path illustrated in FIG. 31 is a configuration
example when applying the SPS type of F function described
regarding FIG. 21 as the F function. Also, the first line of
elements (2, 3, 1, 1) are assumed to be a cyclic matrix as the
example of the matrix applied by a matrix calculating unit
M204, which is the linear conversion executing unit in the F
function.

The intermediate value to be stored in the registers regard-
ing the present configuration example is the output from a first
non-linear calculation unit S101 as illustrated in FIG. 21, is
the input into a linear calculation unit M102, and is the inter-
mediate value 1104 illustrated in FIG. 21.

These intermediate values are stored in registers RO
through R3 regarding FIG. 31.

The basic data flow is similar to the data path illustrated in
FIG. 22 as described beforehand regarding the Expanded
Example 1, and a multiplexor m202 is set before the input of

US 9,418,245 B2

29

anon-linear calculation unit S-box S203. The output from the
matrix calculating unit M204 is input into the non-linear
calculation unit S-box S203 using the multiplexor m202, and
the output from the S-box S203 is input an XOR unit X206.

The data path described regarding FIG. 31 is different from
the configuration illustrated in FIG. 22 in that it is a configu-
ration in which the output from the S-box S203 is input into
the XOR calculation unit X206 before executing the XOR
calculation with the round key, and an XOR calculation is
executed with the values stored in the register R4. An XOR
calculation is performed on this XOR result and the round key
at an XOR calculation unit X201.

Also added are a path p211 connecting the register R8 and
the register R15, and a path p212 connecting the output from
the XOR calculation unit X201 executing the XOR calcula-
tion with the round key and the register R7. This is path setting
for achieving the round permutation different from that in
FIG. 22, that is to say, the round permutation setting illus-
trated in FIG. 30.

Regarding the data path illustrated in FIG. 31, by setting a
configuration to inversely calculate from the intermediate
data in the F function execution unit similar to the other
embodiments described beforehand regarding FIG. 19 and
FIG. 22, that is to say, a non-linear calculation unit S=* func-
tion S205, which enables the execution of the input values for
the next repetition of the round function, the advantage to
reduce registers similar to that previously described can be
expected.

6. Configuration Examples of Encryption Processing
Device

Finally, embodiments of encryption processing devices
executing an encryption processing in accordance with the
previously described embodiments will be described.

The encryption processing devices for executing the
encryption processing in accordance with the previously
described embodiments can be installed in various informa-
tion processing devices executing encryption processing.
Specifically, this can be used regarding various crises in
which encryption processing is executed along with data pro-
cessing and communication processing by devices such as
PCs, TVs, recorders, players, communication devices,
RFIDs, smart cards, sensor network devices, battery/battery
authentication modules, health and medical devices, indepen-
dent network devices, etc.

FIG. 32 illustrates an example configuration of an IC mod-
ule 700 as an example of a device executing the encryption
processing according to the present disclosure. The previ-
ously described processing can be executed in various infor-
mation processing devices such as PCs, IC cards, reader-
writers, and others, and the IC module 700 illustrated in FIG.
32 can be configured in these various devices.

A CPU (Central Processing Unit) 701 illustrated in FIG. 32
is a processor executing various programs such as the starting
and termination of the encryption processing, control of data
transmission and reception, data transfer control between
each configuration element, and others. A memory 702 is
made up from ROM (Read Only Memory) storing fixed data
such as the program executed by the CPU 701, calculation
parameter, and so on, and RAM (Random Access Memory)
used as a work region and storage area of the program
executed regarding the processing of the CPU 701 and param-
eters that arbitrarily change during the processing of the pro-
gram. Also, the memory 702 can be used as a storage region
for data and such applied to conversion matrices and conver-
sion tables (replacement tables) applied during the encryption

10

15

20

25

30

35

40

45

50

55

60

65

30

processing, and for key data necessary during encryption
processing. Further, the data storage region is desirably con-
figured as memory having a tamper-resistant structure.

An encryption processing unit 703 executes encryption
processing and decryption processing in accordance with the
shared key block encryption processing algorithm applying
the previously described encryption processing configura-
tions, that is to say for example, expanded Feistel structures or
Feistel structures.

Further, examples illustrated here used encryption process-
ing means as individual models, instead of provisioning these
kinds of independent encryption processing modules, a con-
figuration can be implemented in which an encryption pro-
cessing program can be stored in ROM, for example, and the
CPU 701 reads out and executes the program stored in ROM.

A random number generator 704 executes random number
generation processing necessary during the generation of
keys necessary during encryption processing.

A transmission/reception unit 705 is a data communication
processing unit executing data communication with external
devices, executes data communication with IC modules such
as reader-writers, for example, and executes the output of
ciphertext generated within the IC module, the input of data
from external reader-writers and so on among others.

Further, the encryption processing device described in the
previously described embodiments is not only applicable to
encryption processing to encrypt plaintext as input data, but is
also applicable to decryption processing to decode the cipher-
text as input data back to plaintext.

Regarding both processing, the encryption processing and
the decryption processing, the configurations of the F func-
tion execution unit having a configuration to reduce registers
as described in the previous embodiments can be applied as it
is.

7. Conclusion of Configuration of the Present
Disclosure

Thus, embodiments of the present disclosure have been
described in detail with reference to specific embodiments.
However, it will be apparent to those skilled in the art that
various modifications and substitutions of the embodiments
may be made without departing from the scope and spirit of
the present disclosure. Thatis to say, the present invention has
been disclosed exemplarily by embodiments, and should not
be interpreted restrictively. The Claims should be referenced
in order to determine the scope of the present disclosure.

Further, the technologies disclosed in the present specifi-
cation can take the following configurations.

(1) An encryption processing device including:

an encryption processing unit configured to divide and
input configuration bits of data to be data processed into a
plurality of lines, and to repeatedly execute data conversion
processing of data for each line;

wherein the encryption processing unit includes

an F function execution unit to input data from one line

configuring the plurality of lines and generate converted
data,

an XOR calculation unit to execute an XOR calculation

with other lines of data corresponding to the output from
the F function,

an intermediate data storage register to store intermediate

data during the process of generating converted data in
the F function execution unit, and

an inverse calculation executing unit to calculate input data

regarding the F function execution unit on the basis of
the data stored in the intermediate storage register.

US 9,418,245 B2

31

(2) The encryption processing device according to (1),
wherein the F function execution unit includes an S-box to
execute non-linear conversion processing of input data for the
F function execution unit, the intermediate data storage reg-
ister stores the output value from the S-box as the intermedi-
ate data, and the inverse calculation executing unit calculates
the input data for the F function execution unit by a calcula-
tion processing including an inverse calculation of the non-
linear conversion processing via the S-box.

(3) The encryption processing device according to either
(1) or (2), wherein the F function execution unit includes a
non-linear conversion unit and a linear conversion unit,
includes a register to store the output from the non-linear
conversion unit as the intermediate data, the linear conversion
unit executes linear conversion processing on the values
stored in the register, and the inverse calculation unit calcu-
lates the input data for the F function by a calculation pro-
cessing on the values stored in the register.

(4) The encryption processing device according to any one
of (1) through (3), wherein the F function execution unit
executes non-linear conversion processing in the non-linear
conversion unit on input corresponding to the F function
execution unit, and further is an SP type of F function to
execute the linear conversion processing in the linear conver-
sion unit.

(5) The encryption processing device according to any one
of (1) through (4), wherein the F function execution unit
executes non-linear conversion processing in the non-linear
conversion unit on input corresponding to the F function
execution unit, and further is an SPS type of F function to
execute the linear conversion processing in the linear conver-
sion unit.

(6) The encryption processing device according to any one
of (1) through (5), wherein the F function execution unit
includes an XOR calculation unit with the round key input
externally.

(7) The encryption processing device according to any one
of (1) through (6), wherein the F function execution unit
includes a repeating structure of a plurality of non-linear
calculation units.

(8) The encryption processing device according to any one
of (1) through (7), wherein the encryption processing unit
executes encryption processing to convert plaintext as the
input data into ciphertext, and executes decryption processing
to convert ciphertext as the input data into plaintext.

Further, the processing method executed in the previously
described device and system, and the program executing this
processing is included in the configuration of the present
disclosure.

Also, a portion of the processing described in this specifi-
cation can be executed as hardware, software, or combination
of the two. When executing this processing by software, a
program to which the processing sequence is recorded is
installed and executed in memory within a computer
assembled with specialized hardware, or the program can be
installed and executed in a general-purpose computer capable
of executing the various processing. For example, the pro-
gram can be recorded onto a recording medium beforehand.
Other than installing to the computer from the recording
medium, the program can be received via a network such as a
LAN (Local Area Network) or the Internet, and can be
installed to a recording medium such as an internal hard disk.

Further, the various processing disclosed in this specifica-
tion can not only be executed temporally as according to the
disclosure, but can also be executed in parallel or individually
as necessary or depending on the processing performance of
the device executing the processing. Also, the system regard-

10

15

20

25

30

40

45

55

65

32

ing the present specification is a logical combination configu-
ration of multiple devices, and so each configuration of the
devices is not limited to being housed within the same physi-
cal unit.

INDUSTRIAL APPLICABILITY

As previously described, according to an embodiment of
the present disclosure, miniaturization of the encryption pro-
cessing configuration is achieved.

Specifically, included is an encryption processing unit con-
figured to divide and input configuration bits of data to be data
processed into a plurality of lines, and to repeatedly execute
data conversion processing of data for each line, wherein the
encryption processing unit includes an F function execution
unit to input data from one line configuring the plurality of
lines and generate converted data, an XOR calculation unit to
execute an XOR calculation with other lines of data corre-
sponding to the output from the F function, an intermediate
data storage register to store intermediate data during the
process of generating converted data in the F function execu-
tion unit, and an inverse calculation executing unit to calcu-
late input data regarding the F function execution unit on the
basis of the data stored in the intermediate storage register.
The input values for the F function execution unit are calcu-
lable by the inverse calculation in the inverse calculation
executing unit, which enables a reduction in registers for
storing this data, and so miniaturization of the encryption
processing configuration is achieved.

REFERENCE SIGNS LIST

700 IC module

701 CPU (Central Processing Unit)
702 memory

703 encryption processing unit

704 random number generator

705 transmission/receiving unit

The invention claimed is:
1. An encryption processing method comprising:

in an encryption processing device with a small circuit
scale:

dividing and inputting configuration bits of data to be pro-
cessed into a plurality of lines, and repeatedly executing
data conversion processing of data for each line of the
plurality of lines;

executing F function processing of data input from a line of
the plurality of lines to an F function and generating
converted data using the F function;

executing an XOR calculation with data from another line
of the plurality of lines and the converted data;

storing, in a register of the encryption processing device,
the data input from the line of the plurality of lines to the
F function;

deleting from the register the data input from the line of the
plurality of lines to the F function and storing interme-
diate data during the process of generating the converted
data using the F function; and

upon generating the converted data using the F function,
restoring in the register, the deleted data input based on
the intermediate data generated during the process of
generating the converted data and stored in the register.

US 9,418,245 B2

33

2. An encryption processing device comprising:
a processor operable to:
divide and input configuration bits of data to be pro-
cessed into a plurality of lines, and repeatedly execute
data conversion processing of data for each line of the
plurality of lines;
execute F function processing of data input from a line of
the plurality of lines to an F function and generate
converted data using the F function; and
execute an XOR calculation with data from another line
of the plurality of lines and the converted data; and
a register operable to:
store the data input from the line of the plurality of lines
to the F function; and
delete the data input from the line of the plurality of lines
to the F function and store intermediate data during
the process of generating the converted data using the
F function,
wherein, upon generating the converted data using the F
function, the processor is operable to restore the
deleted data input based on the intermediate data gen-
erated during the process of generating the converted
data and stored in the register.
3. The encryption processing device according to claim 1,
wherein the processor is operable to execute S-box process-
ing to execute non-linear conversion processing of data input
from the line of the plurality of lines to the F function,
wherein the register is operable to store an output of the
S-box processing as the intermediate data, and

wherein the processor is operable to restore the deleted
data input based on an inverse calculation of the non-
linear conversion processing.

4. The encryption processing device according to claim 1,
wherein the F function processing includes a linear conver-
sion processing on values stored in the register.

5. The encryption processing device according to claim 4,
wherein the F function processing includes non-linear con-
version processing on the data input from the line of the
plurality of lines to the F function, and wherein the F function
is an SP type of F function to execute the linear conversion
processing.

6. The encryption processing device according to claim 4,
wherein the F function processing includes non-linear con-
version processing on the data input from the line of the

10

15

20

25

30

35

40

34

plurality of lines to the F function, and wherein the F function
is an SPS type of F function to execute the linear conversion
processing.

7. The encryption processing device according to claim 1,
wherein the XOR calculation is executed with a round key
input externally.

8. The encryption processing device according to claim 1,
wherein the F function processing includes a repetition of a
plurality of non-linear calculations.

9. The encryption processing device according to claim 1,
wherein the processor is operable to execute encryption pro-
cessing to convert plaintext as the data to be processed into the
plurality of lines into ciphertext, and execute decryption pro-
cessing to convert ciphertext as the data to be processed into
the plurality of lines into plaintext.

10. A non-transitory computer readable medium having
stored thereon, a set of computer-executable instructions for
causing the computer to perform steps comprising:

in an encryption processing device with a small circuit
scale:

dividing and inputting configuration bits of data to be pro-
cessed into a plurality of lines, and repeatedly executing
data conversion processing of data for each line of the
plurality of lines;

executing F function processing of data input from a line of
the plurality of lines to an F function and generating
converted data using the F function;

executing an XOR calculation with data from another line
of the plurality of lines and the converted data;

storing, in a register of the encryption processing device,
the data input from the line of the plurality of lines to the
F function;

deleting from the register the stored data input from the line
of the plurality of lines to the F function and storing
intermediate data during the process of generating the
converted data using the F function; and

upon generating the converted data using the F function,
restoring the deleted data input in the register based on
the intermediate data generated during the process of
generating the converted data.

#* #* #* #* #*

